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Statistical Assessment of Radiometric Measurements
From Autonomous Systems

Davide D’Alimonte and Giuseppe Zibordi

Abstract—In situ autonomous systems are commonly used for
the collection of measurements for the vicarious calibration of
satellite data and the successive validation of derived products.
However, the use of autonomous systems creates the need of
assessing the quality of the large volume of collected data. Within
the framework of ocean color activities, this work investigates
the consistency of normalized water leaving radiance spectra
produced from measurements taken with an above-water au-
tonomous system installed on an oceanographic tower. The study
has shown the need of addressing the problem under two different
levels of inference. The first level, so-called self-consistency, has
demonstrated the capability of identifying spectra with a low
statististical representatitiveness within the dataset itself. The
second level, so-called relative-consistency, has provided the possi-
bility of evaluating whether a spectrum is relatively consistent to
a reference set of quality-assured data.

Index Terms—Neural network, ocean color, water leaving
radiance.

I. INTRODUCTION

I N SITU autonomous systems are commonly used for the
collection of a large amount of measurements to support

Earth observation programs. Within the framework of ocean
color activities, autonomousin situ measurements for the
calibration and validation (cal/val) of space data can be pro-
duced with in-water radiometers operated on buoys, or with
above-water autonomous radiometers deployed on platforms
like oceanographic towers, large buoys, or ships. Measurement
sites characterized by almost stable environmental condi-
tions are particularly suitable for the vicarious calibration of
space sensors, while sites representing different environmental
regimes are more appropriate for the validation of space derived
products. In both cases, autonomous systems open the issue of
how assessing the quality of the large volume of collected data.

This challenging problem is here investigated through the im-
plementation of advanced statistical methods and their succes-
sive application to an existing set of radiometric data produced
with an above-water autonomous system installed on an oceano-
graphic tower. To ensure the quality of these measurements col-
lected in daylight conditions with time intervals which may vary
from a few minutes up to tens of minutes, it is necessary to detect
and remove data affected by cloud perturbations, measurement
artifacts, and poor instrument performance. The consistency of
radiometric data is here addressed under two different levels of
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inference. The first level, so-calledself-consistency, evaluates
whether a radiance spectrum is anomalous with respect to all
the available spectra. The second level, so-calledrelative-con-
sistency, evaluates whether a spectrum is consistentrelatively to
a reference set of independent and quality-assured spectra.

The self-consistency analysis is undertaken exploiting a
recursive modeling of radiance spectra. For this purpose, an
auto-associative neural network (NN) is trained using the
same spectra as input and output. This study introduces a new
application of the auto-associative NN already used as a feature
extraction procedure [1], [2], and in checking the efficiency
of sensors in engine control systems [3]. As for any function
regression model, the effectiveness of the auto-associative
NN depends on the density of the data. Thus, to increase the
effectiveness of the wholeself-consistency scheme, the auto-as-
sociative NN is complemented with an estimate of the data
density to detect anomalous spectra that may not be identified
with a function regression approach.

Therelative-consistency analysis is undertaken with anovelty
detection scheme [4] by modeling the distribution of the quality-
assured spectra projected onto the two-dimensional (2-D) space
generated with the auto-associative NN. This feature extraction
approach has been adopted by observing that the auto-associa-
tive NN can be viewed as a non-linear generalization of a prin-
cipal component analysis [5]–[7] which was shown to explain
most of the variance of the seawater radiometric spectra through
the first two principal components [8].

II. DATASETS

Thenormalized water leaving radiance, , (i.e., the radi-
ance leaving the sea surface and normalized with respect to the
downward irradiance [9]) is a fundamental radiometric quantity
for ocean color cal/val activities. In this study, the methods for
the quality assurance of spectra are applied on the basis
of two datasets. The first consists of above-water measure-
ments performed with two Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) Photometer Revision for Incident Surface
Measurement (SeaPRISM) autonomous systems sequentially
operated in a three-year period. The second dataset results from
in-water optical profiles individually executed on ideal mea-
surement conditions (low cloudiness and sun not perturbed by
clouds) with the Winched Stabilized Profiling Environmental
Radiometer (WiSPER). Both datasets were produced in the
northern Adriatic Sea at the Acqua Alta Oceanographic Tower
(AAOT) and were extensively used to support ocean color
development and validation activities within the framework
of the Coastal Atmosphere and Sea Time Series (CoASTS)
program [10]. These data benefit from the unique condition
offered by the measurement site located eight nautical miles off
the Venice Lagoon (4519 N, 12 30 E) of representing both
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Case-1 and Case-2 water types with approximately one third of
the observations pertaining to Case-2 [11].

A. Radiometric Data From Autonomous Systems

The spectra from the autonomous above-water ra-
diometer were produced with SeaPRISMs [manufactured
by CIMEL (Paris, France)] included in the Aerosol Robotic
Network (AERONET) of sun photometers [12]. The latter
guarantees support from the AERONET program for real-time
data handling in addition to regular system calibration. The
SeaPRISM measurements are taken with a full angle field of
view of 1.5 in eight spectral bands at center-wavelengths rel-
evant for the atmospheric aerosol and water vapor monitoring,
and for ocean color applications (i.e., 412, 440, 500, 555, 675,
870, 940, 1020 nm). With the exception of the water vapor
channel centered at 940 nm, all bands are 10 nm wide.

The SeaPRISM sea-viewing scenario produces the data re-
quired for determining through sequential and repeated
measurements of sea-radiance at viewing angle from
nadir and relative azimuth angle with respect to the sun
azimuth, and sky-radiance at viewing angle (with

) and relative azimuth angle . The
SeaPRISMs operated at the AAOT were programmed to per-
form measurement sequences every 30 min during daylight con-
ditions. Each sequence is comprising of 11 sea- and 3 sky-radi-
ance observations per spectral channel and lasts approximately
6 min. An assessment of the accuracy of the SeaPRISM data,
together with the description of the data processing used for
producing , was published elsewhere using data collected
under various environmental conditions [13]. The expected un-
certainty in SeaPRISM is 5% from 412–555 nm, and 12%
at 675 nm [14].

The SeaPRISM data used in this study were processed with
the AERONET code implemented in agreement with the pub-
lished method [13]. This allowed for a basic quality assurance
including: 1) removal of measurement sequences with incom-
plete data records; 2) filtering out measurement sequences char-
acterized by high variability in repeated sea and sky measure-
ments; and 3) cloud screening according to a scheme exclu-
sively based on sun-photometric measurements (i.e., cloud-per-
turbed observations are determined using triplets of direct sun
irradiance measurements and daily occurrence of aerosol optical
thickness retrievals [15]). However, this basic protocol may fail
to detect spectral anomalies due to sparse clouds, the presence
of occasional obstacles in the proximity of the instrument, or the
poor performance of the radiometer in some channels.

B. Reference Set of Quality Assured Data

Quality-assured spectra were derived from in-water
profiles collected with the WiSPER system. The WiSPER
upwelling radiance profiles are taken in seven spectral bands
10 nm wide at center-wavelengths relevant for ocean color
applications (i.e., 412, 443, 490, 510, 555, 665, and 685
nm). The WiSPER radiance sensor, an OCR-200 radiometer
manufactured by Satlantic, Inc. (Halifax, Canada), is installed
on a custom-built profiling rig whose rigidity and stability is
maintained by two taut wires anchored between the deploy-
ment platform of the AAOT and a weight on the sea bottom.
Above-water downward irradiance data, collected at the same
time as the in-water radiometric data, are used to correct these
latter for illumination changes during casts. This correction

is performed by normalizing the in-water data with respect to
the time-correspondent above-water downward irradiance, and
multiplying the resulting values by the downward irradiance at
a reference time generally coinciding with the start of the cast.
The overall processing applied to produce spectra from
WiSPER profile data relied on assessed protocols [13]. The
expected uncertainty in WiSPER data is 5% [14]. The set
of quality-assured WiSPER data is composed of 244 spectra
collected in the period January 1999–February 2001 (the same
dataset was also used to investigate optical profiling protocols
in coastal waters [16]). An independent study [13] has shown
that time-coincident above- and in-water spectra produced
with the SeaPRISM and WiSPER systems, exhibit spectrally
averaged percent differences within 5%.

III. METHODS

The spectral measurements used in this analysis are pre-
processed, and afterward their consistency is assessed by
identifying anomalous spectra without accounting for any extra
information obtainable from the quality-assured data (self-con-
sistency). A novelty detection approach is also investigated on
the basis of statistical information derived from the reference
set of quality-assured data (relative-consistency).

A. Data Preprocessing

The study is undertaken considering SeaPRISM data
at the center-wavelengths 412, 440, 490, 555, 675 nm and
WiSPER data at 412, 443, 490, 555, 665 nm. The
value at 490 nm, not directly measured by the current series
of SeaPRISMs, is determined by linearly interpolating
at 440 and 500 nm. The spectra are then rescaled with
respect to the value measured at 555 nm. The choice of 555
nm as normalizing wavelength is mostly supported by its use,
in combination with different center-wavelengths [17], [18], to
discriminate optically significant seawater components.

The appropriateness of interpolating at 490 nm is sup-
ported by an analysis of SeaPRISM and WiSPER band ratios be-
tween 490 and 555 nm, which has shown an average difference
of 3.9% [14]. This difference is comparable to the uncertainty
induced in SeaPRISM data by environmental perturbations
(as determined on the basis of a 3% uncertainty independently
affecting the values at 490 and 555 nm [13]).

The effects of slight shifts in SeaPRISM and WiSPER
center-wavelengths (i.e., 440 versus 443 nm and 675 versus 665
nm, respectively) are neglected. This is supported by compar-
isons between SeaPRISM and WiSPER exhibiting average
differences generally lower than their respective uncertainties
[13].

Tables I and II summarize the statistics of spectra
produced with the SeaPRISM systems identified by their
AERONET ID number (i.e., 139 and 176). Table III refers
to the set of quality-assured spectra produced with the
WiSPER system.

B. Self-Consistency Classification Scheme

The self-consistency approach relies on the hypothesis that
the autonomous sensor is mostly well performing and anoma-
lous spectra are occasional. Let us indicate the variable
with ; the true, but unknown, with ; and the corre-
sponding actual (i.e., measured) with . Now, assume that
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TABLE I
MINIMUM, MAXIMUM, MEAN, AND STANDARD DEVIATION (MIN, MAX, �,

AND �, RESPECTIVELY) OF THE 951 L SPECTRA PRODUCED WITH

SEAPRISM-139 SYSTEM (L DATA ARE IN UNITS OF MILLIWATTS

PER SQUARE CENTIMETER PER MICRON PER STERADIAN)

the actual is affected by a Gaussian additive noise, , with
mean and spherical covariance

(1)

(2)

where is the identity matrix and indicates the multivariate
normal distribution. The assumption of additive noise with zero
mean and normal distribution is supported by the following
elements.

1) The uncertainty affecting the SeaPRISM and WiSPER ra-
diometric data investigated in this work has three main
sources: absolute calibration, environmental variability,
and corrections for off-nadir view (specific for SeaPRISM
data) and for shading perturbations (specific for WiSPER
data) [13]. The uncertainty affecting the absolute calibra-
tion coefficients is a multiplicative factor. The environ-
mental effects are a source of additive noise. The uncer-
tainty produced by the off-nadir and shading corrections
is a composition of both multiplicative and additive con-
tributions to the measurement uncertainty. An assump-
tion of overall additive noise was thus made considering
that an error budget estimate has shown the environmental
effects as the most significant noise source for both the
SeaPRISM and WiSPER measurements [13].

2) Several and independent factors concur to generate the
environmental noise (i.e., wave perturbations, changes
in the water column and in the illumination conditions).
Although these factors may not independently produce
a normal distribution of uncertainties, their joint effect
tends to be normal for the central limit theorem.1

3) Finally, the comparison of SeaPRISM and WiSPER
has not shown the existence of any relevant bias

(i.e., above the expected radiometric uncertainties [13])
between the two.

By indicating with the conditional probability den-
sity function and with the expectation, it is natural to express
the unknown as

(3)

1The central limit theorem can be summarized as follows: “The distribution
of a sum tends to be normal, even when the distribution of the data from which
the sum is computed is non-normal.”

TABLE II
AS IN TABLE I, BUT FOR THE 1424 L SPECTRA

PRODUCED WITH SEAPRISM-176 SYSTEM

TABLE III
AS IN TABLE I, BUT FOR THE 244 L SPECTRA PRODUCED WITH

THE WISPER SYSTEM

Fig. 1. Schematic representation of the auto-associative NN. The bottleneck
layer, made by two nodes, has been used for the reduced dimensional
representation of the input L spectra.

Equation (3) also enables to estimate from the experimental
data

(4)

where is the number of samples in the dataset and is the
number of input wavelengths. This study relies on the auto-asso-
ciative regression model described in Section III-B to estimate

.
It is stressed that the effectiveness of a regression approach

depends on the data density: the estimation of the conditional
expectation becomes less accurate for isolated or anomalous
spectra which may not be identified by the auto-associative
model. To address this issue, the present work combines the data
regression with a non-parametric estimation of the data density
based on the k-nearest-neighbors algorithm (KNN), presented
in Section III-B2. Accounting that function regression and
density estimation complement each other, their combined use
improves the performance of the self-consistency approach.
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Fig. 2. Dependence of the model performance on the architecture of the
auto-associative NN (number of nodes in the mapping and demapping layers).
For each configuration, the auto-associative NN has been trained five times,
each time restarting the training process. The effect of each model architecture
is here summarized averaging the performance of the auto-associative NN with
respect to the validation data.

1) Auto-Associative Neural Network: The five-layer feed-
forward auto-associative network is illustrated in Fig. 1. Specif-
ically:

1) The first layer is the auto-associative model input, i.e., the
actual spectrum; the fifth layer is the corresponding
conditional expectation.

2) The second and the forth layers are called mapping and
demapping layers, respectively. Both these layers have an
arctangent transfer function that determines the non-linear
nature of the model.

3) The third layer is referred to as bottleneck, and is made
by a smaller number of nodes with respect to the model
input. The transfer function of the third layer is the iden-
tity function.

The auto-associative NN model has been implemented using
the neural network toolbox of MATLAB. The model training is
performed with the Levenberg–Marquard algorithm to set the
parameters of the NN minimizing the sum of squared errors
(SSE) between the actual and the corresponding model
output. Half available spectra (i.e., 1309 out of 2618 including
data from both quality-assured and autonomous system mea-
surements) were randomly sampled for the model training, the
remaining half for the validation. Testing models with two to
ten nodes in the mapping and demapping layers allowed to se-
lect the architecture with six nodes (see Fig. 2).

Notice that the relatively large number of model parameters
(i.e., ) is compensated
by the size of the training dataset, and this reduces the risk of
overfitting. It was found that outliers and local minima of the
learning cost function can occasionally affect the representa-
tion of spectra at the bottleneck layer (see Section IV). For this
reason, once the number of nodes has been defined, an addi-
tional set of model training (restarting the training process and
resampling the training data) has been used to set the final auto-
associative NN for the operational classification task. Fig. 3
shows the corresponding data partitioning into training and val-
idation sets, and the resulting model generalization capability.

Each actual is classified on the basis of the squared dif-
ference between itself and the corresponding NN output. When

Fig. 3. Scatter plot of the measuredL band ratios versus the corresponding
values at the output of the auto-associative NN. The mean square error of
training and validation data are 0.0051 and 0.0024, respectively. This result
supports the validity of the architecture selected. In fact, although in this case
a relevant part of the anomalous spectra was randomly included in the training
set, the learning process of the auto-associative NN was not driven by these
data.

this difference overcomes significantly [see (4)], it means
that the input spectrum presents some anomaly. Notice that this
approach may also allow for detecting anomalies at specific in-
dividual center-wavelengths, or set of center-wavelengths. Fi-
nally, it is outlined that the auto-associative NN learns to repre-
sent expected spectra from the training data. Thus, the presence
of spectra affected by systematic errors in the training dataset
would compromise the identification of anomalous spectra af-
fected by the same systematic errors.

2) K-Nearest-Neighbors Density Estimation: The regres-
sion effectiveness of the auto-associative NN depends on the
data density. In order to identify anomalous spectra untraceable
with the auto-associative NN, the K-nearest-neighbors algo-
rithm is additionally used.

To illustrate the K-nearest-neighbors algorithm [19], consider
that the probability, , for a data point to fall in a region is

(5)

where is the probability density function. So, if data
points are independently drawn from , the expected number
of points falling in is . Assuming that does
not vary significantly over the region , and indicating with
the volume of , it follows that

(6)
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Fig. 4. Two-dimensional latent representation of L spectra through the bottleneck of the auto-associative NN. The panels in the first row illustrate a set of
points chosen in the bottom left region of the 2-D latent space (central panel), together with the corresponding radiometric data in physical units (left panel) and
rescaled values (right panel). The same scheme is used in the subsequent rows of panels to show the topographic nature of this 2-D representation.

The K-nearest-neighbors algorithm used in this study identifies
the region with a hypersphere centered in . Initially the ra-
dius of the hypersphere is zero and is estimated from (6)
increasing the radius until points are found. spectra are
classified as self-inconsistent when the radius of the hypersphere
containing the closest spectra overcomes a threshold.

C. Relative-Consistency Classification Scheme

The distribution of the quality-assured data is modeled with
a Gaussian mixture model (GMM) on the basis of the features
extracted from the original spectra by the bottleneck of the auto-
associative NN. Novel spectra are those with a low probability
of being represented within the quality-assured data [20], and
are here classified as relative-inconsistent (these would include
those spectra not detected by the auto-associative NN because
affected by systematic errors).
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Fig. 5. Sensitivity of the self-consistency scheme to the threshold t of the
auto-associative NN. For the purpose of this study an empirical value t =

0:006 has been used, although a smaller value could be required for specific
applications.

1) Gaussian Mixture Model: The GMM represents com-
plex data distributions through a linear combination of simpler
Gaussian density functions

(7)

where is the mixing coefficients of the th kernel

Fig. 6. Distribution of the hypersphere radius with k = 3 used for the KNN
identification of self-inconsistent spectra. The vertical line corresponds to the
threshold radius of 0.04 chosen to identify anomalous spectra.

(8)

with the center and the covariance matrix of the kernel,
the dataset dimensionality (for the application considered

in this study, ), and T indicates the matrix transpose.
Although the kernel functions are quite simple, their combi-
nation in a mixture representation allows for the modeling of
any continuous distribution [19]. The GMM can be efficiently
trained through the expectation–maximization (EM) algorithm
[21]. The NETLAB toolbox [22] for MATLAB has been used
for the GMM numerical implementation.
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Fig. 7. Self-inconsistent L spectra are highlighted in the panels of the top row. Red points correspond to spectra that overcome the threshold of the
auto-associative analysis. Green points refer to spectra detected by the KNN scheme. When the same spectrum violates both criteria, the corresponding latent point
is colored in yellow. The panels in the second and third row highlight the effectiveness of the auto-associative approach in detecting minor spectral anomalies.

IV. RESULTS AND DISCUSSION

The panels of the central column of Fig. 4 show the projection
of the spectra onto the 2-D latent plane2 generated by the
bottleneck layer of the auto-associative NN (i.e., each neuron
of the bottleneck layer corresponds to an axis of this plane).
Four sets of points are identified in different regions of the latent
space. Each set corresponds to a different row of panels: selected
points are highlighted in black in the central panel, rescaled
spectra projected onto these points are in the right panel; cor-
responding spectra in physical units are in the left panel. The
panels of the first row illustrate a set of points chosen in the
bottom left region of the 2-D latent space. The spectra cor-

2The projection of L spectra onto the latent space is shown without pro-
viding axis labels and ranges because of the arbitrary rescaling performed in the
bottleneck layer of the auto-associative NN. A similar scheme is also applied vi-
sualizing data features extracted with other models (see for instance NeuroScale
[23], Generative Topographic Mapping [24], and Self Organizing Map [25]).

responding to these data points are characterized by a maximum
at 555 nm. The subsequent rows of panels show how the spec-
tral properties change across the data distribution (i.e., from the
bottom left to the top right of the latent plane). It can be observed
that data points in the central region of the latent plane are re-
lated to spectra with maximum at 490 nm; while points in the
top left region are linked to spectra with a relative minimum and
maximum at 440 and 555 nm, respectively. In all cases, points
that are close in the latent space correspond to specific spectral
patterns and refer to different bio-optical conditions character-
ized by an increasing concentration of optically significant con-
stituents (mostly Chlorophyll a) from the bottom to the top case,
respectively.

A. Self-Consistency

The spectral self-consistency is assessed: 1) applying a
threshold to the difference with the
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Fig. 8. Projection of L spectra data onto the 2-D latent space. Each panel
highlights the distribution of the radiometric data from a different sensor.

number of sampling wavelengths, and the auto-as-
sociative NN model input and output, respectively [see (4)];
and 2) setting the and thresholds for the outliers detection
scheme.

The sensitivity of the self-consistency scheme to the threshold
of the auto-associative NN is presented in Fig. 5. Results show

that the number of spectra identified as inconsistent slowly in-
creases from 12 to 19 with decreasing from 0.010 to 0.005,
while it largely increases for . For the purpose of this
study an empirical value has been used, although a
smaller value could be required for specific applications.

The k-nearest-neighbors algorithm, also used to identify self-
inconsistent spectra, requires quantifying the parameter and
the radius of the hypersphere. A spectrum is here assumed
self-inconsistent if it does not have at least two other “very
close” spectra. Hence, , with used to quantify “very
close.” The value of was defined on the basis of the distribu-
tion of the hypersphere radius presented in Fig. 6. Here, each
hypersphere is centered on a different data point and the radius
is such that it allows for including the two closest data points in
the hypersphere itself. An anomalous tail starts approximately
when the value of the hypersphere is approximately 0.04. So, an

spectrum is considered anomalous when the hypersphere
radius is more than 0.04.

Notice that thresholds are dimensionless in both cases be-
cause data are preprocessed rescaling the spectra with re-
spect to the value measured at 555 nm (see Section III). Also, the
present analysis does not account for the dependence of the stan-
dard deviation of the radiometric data on the sampling wave-
lengths (see Tables I–III). This is supported by the normalization
of spectra: the standard deviation of the rescaled spectra is
between 0.14 and 0.15 for all wavelengths, with the exception
of 440 nm for which it is 0.1.

TABLE IV
SUMMARY OF L SPECTRA IDENTIFIED AS SELF-INCONSISTENT. THE

THRESHOLD APPLIED TO THE AUTO-ASSOCIATIVE MODEL IS 0.006.
OUTLIERS ARE IDENTIFIED SETTING THE KNN PARAMETERS

k = 3 AND r = 0:04, RESPECTIVELY

Data classified as self-inconsistent in the original higher di-
mensional spectral space are highlighted in the top row panels of
Fig. 7 through the same latent map used in the previous section.
The red points in the top central panel correspond to spectra that
violate the auto-associative constraint while green points refer
to the KNN scheme. When the same spectrum violates both cri-
teria, the corresponding latent point is colored in yellow.

A simple visual inspection confirms the presence of signifi-
cant anomalies in those spectra which violate the KNN scheme,
or both the KNN and auto-associative schemes. Differently,
spectra violating the auto-associative scheme only may present
minor anomalies. A quantitative summary of results from the
applied statistical methods is presented in Table IV. Out of the
25 spectra classified as self-inconsistent, eight do not satisfy the
auto-associative requirements, nine the KNN scheme, and eight
both criteria. For illustrative purposes, the second and third row
panels of Fig. 7 detail the spectral shape of the points nearby
those indicated by the red arrows. In both cases the anomalous
spectrum exhibits an inconsistent value at 440 nm.

The former results indicate that the use of reference data is
not strictly required to assess the self-consistence of spectra
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collected by the autonomous system, provided these data do not
include measurements affected by systematic errors. Still, statis-
tics from reference data—when available—can offer additional
quality assurance elements further on increasing the confidence
on the investigated data (such a capability has relevance in the
production of very high quality data for vicarious calibration
processes).

B. Relative-Consistency

Latent points resulting from the projection of the quality-as-
sured spectra from the WiSPER system (see Section II-B) are
shown in Fig. 8(a), while points resulting from the projection of
the spectra from the two SeaPRISM systems (see Section II-A)
are displayed in Fig. 8(b) and (c). The WiSPER latent points
exhibit a narrow and almost regular distribution. This is likely
to be explained by the occasional collection, generally on ideal
conditions, of these quality-assured measurements. Since the
axes of all these three plots have the same scale (not shown),
an appreciable similarity of mean location, spread, and orien-
tation characterizes the WiSPER and SeaPRISM data distribu-
tions. The SeaPRISM spectra projected onto latent regions with
a low density of points are probably related to extreme environ-
mental conditions encountered during the continuous operation
of the autonomous systems.

After modeling the distribution of the reference dataset with
the GMM, the spectral relative-consistency is defined on the
basis of the probability of finding the spectrum to be classi-
fied within the distribution of the quality-assured data. In the
central column of Fig. 9, data points are highlighted with dif-
ferent colors for different degrees of novelty. Data points with
more than 50% probability of being included within the distri-
bution of the quality-assured data are indicated in yellow. Simi-
larly, points in green, dark green and red correspond to threshold
probabilities of 25%, 20%, and 10%, respectively. Additionally,
Fig. 9 details three sets of points from latent regions with highly
relative-inconsistent spectra. Each set of points corresponds to
a peculiar bio-optical condition, as hereafter described.

The top row panels mostly display data from a single event
occurring in May-June 2004 and characterized by the presence
of relatively high pigment concentration ranging from 3 to ap-
proximately 25 mg/m . This event, considered quite exceptional
during the three-year SeaPRISM deployment at the AAOT, was
also confirmed by the SeaWiFS satellite data and, on a lesser
extent, by in situ measurements of pigment concentration [14].

The second row panels mostly present data observed in the
months of July-August and exhibiting features typical of rela-
tively low pigments concentration (i.e., below 0.2 mg/m ) al-
ready observed during summer seasons [18].

Finally, the third row panels illustrate data collected in the
months of October–January and exhibiting features determined
by intermediate pigments concentration but with increased
(when compared with the former two cases) colored dissolved
organic matter and non-pigmented particles of riverine origin
mostly occurring during fall-winter seasons [18].

It is relevant to note that the outlier spectra appearing in the
second and third row of Fig. 9 were previously flagged as self-
inconsistent (see Fig. 7 and Table IV).

V. SUMMARY AND CONCLUSION

The consistency of large volumes of normalized water leaving
radiance spectra, , from autonomous systems cannot be as-

sessed with a novelty detection approach only (i.e., modeling
the distribution of quality-assured samples and then looking for
outliers). In fact, data not exhibiting any spectral anomaly, but
not represented within the set of quality-assured measurements,
would be misclassified: they would appear novel without being
anomalous. In addition, the natural variability of makes dif-
ficult the identification of spectra with minor anomalies as novel
data. Consequently, instead of relying on a single scheme, the
present study has investigated the consistency of spectra at
two different level of inference, so-called self-consistency and
relative-consistency. Specifically, an auto-associative NN was
jointly used with a KNN algorithm to assess the self-consistency
of spectra without accounting for any extra information
obtainable from quality-assured data. Independently, a novelty
detection approach was applied to identify relative-consistent
spectra explicitly on the basis of the quality-assured data.

By assuming that the intrinsic dimensionality of the modeled
spectra is smaller than the number of sampling wavelengths, the
relative-consistency was defined on the basis of the features ex-
tracted from the bottleneck of the auto-associative model. To
illustrate that the original data structure is preserved at the NN
bottleneck outputs, this study has shown how points close in
the latent space correspond to similar spectra. Results have thus
highlighted how different latent regions can be related to dif-
ferent bio-optical conditions. This “ topographic nature,” which
is expected as long as the continuity between spectra can be cap-
tured by the auto-associative NN, additionally supports the va-
lidity of the implemented model.

Due to the impossibility of giving an universal definition of
anomalous spectrum, the effectiveness of the proposed quality
assurance scheme has been a posteriori assessed through a
visual inspection of the classification results. Specifically,
the self-consistency scheme has illustrated the capability of
filtering out different percentages of anomalous spectra as a
function of the thresholds used for the auto-associative NN
and KNN algorithms. For instance, changing from 0.01 to
0.001 the threshold applied to the auto-associative NN allowed
for the removal of percentages of self-inconsistent spectra
increasing from approximately 1% to above 10% of the total
measurements. It is recalled that this relatively small number
of abnormal spectra depends on the basic quality assurance
applied during the dataset creation (i.e., the data used in
this study were already screened for major artifacts).

It is finally pointed out that the possibility of detecting anoma-
lous spectra with the self-consistency analysis, and of addition-
ally identifying spectra mostly comparable to reference mea-
surements (relative-consistency analysis), allows for a cross-
screening of spectra produced from autonomous systems.
This is of extreme importance for the production of very high
quality data suitable for the vicarious calibration of space sen-
sors.
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Fig. 9. Novelty detection screening of self-consistent L spectra based on the GMM algorithm. Yellow points correspond to spectra with probability higher
then 50% of being represented in the distribution of the quality-assured data. Similarly, points in green, dark green, and red correspond to a threshold probabilities
of 25%, 20%, and 10%, respectively. The three sets of points highlighted with the blue circles, one for each set of row panels, correspond to different bio-optical
conditions (see text).
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