
Sergey Korkin (UMBC & NASA GSFC, sergey.v.korkin@nasa.gov), Alexei Lyapustin (NASA GSFC), and Brent Holben (NASA GSFC)

AERONET Project: The Next 30 Years of [Scientific] Software Development

Abstract & Motivation
Rigorous protocols for instrument absolute calibration and data processing, developed and

maintained by a dedicated international team for over three decades, have established

AERONET as the global standard for aerosol research. Software has been, and will

continue to be, a crucial contributor to the project’s success.

AERONET relies on various software including data processing (primarily implemented in C-

language), and research (forward and inverse modelling - mostly in Fortran). This disparity

between C and Fortran, and the lack of support for modern software development tools

(Python, Intel MKL high-performance mathematical library, Doxygen) disrupts seamless data

flow and hampers research progress.

Furthermore, scientific software serves both as a research tool and an object of study. As

science evolves, the software undergoes modifications, often incorporating “temporary”

patches that persist indefinitely within the codebase without proper documentation. Decades of

extensive development without systematic cleanup inevitably turn software into “black boxes”

with “spaghetti code”.

Our presentation outlines updates to scientific software, relevant to AERONET, over the past

few years, including radiative transfer solver, atmospheric absorption spectroscopy, and light

scattering by spheroids. We will share ideas based on our experience to stimulate

discussion on enhancing and advancing one of the AERONET project's critical

components.

Radiative Transfer (RT): Multiple Scattering of Sunlight

ROSES RST Proposal:

“Fast Polarized RT Code for
V3 AERONET Reprocessing”

PI: S. Korkin, Collaborators:
A. Lyapustin, A. Siniuk, and
B. Holben

vRT solver SORD:

• Successive orders (replaced
the original SOS vRT)

• Fortran 90/95

• Emphasis on the code
“quality” for easy support:

• Readability, comments

• Structure

• 50+ Tests (automatic mode)

• “ Other people will read it “

• Interface between the solver
and inversion code

• Publicly available:
https://github.com/korkins/
SORD_JQSRT_2017

SORD supported AERONET V3
reprocessing

“We want it faster “ (never
ending requirement) & we need:

• to run it on a supercomputer

• to add fluxes, mix land &
ocean

• TOA reflectance (was not
provided on output by default)

• output “in the middle” of
atmosphere (MLO
observatory), etc.

• Multiple SZAs for MLO
calibration (averaging)

• Add Cirrus to Aerosol &
Rayleigh mix

Mid-2018: end of the proposal = end of support for RT code. If HQ supports AERONET shouldn’t the code get something?

Proposed To-do List for AERONET’s RT Code (Solver):

• Document code(s) as “paper-and-code bundle”
• Collocate necessary equations with short code snippets

• Arrange these in an order natural for code development
starting from low-level function without dependencies

• Provide reproducible final and unit tests

• Try predict where next developer may have problems

• Open-source code vs. open knowledge &
experience: https://github.com/korkins/gsit

Faster SORD:

• Did you see a poster by M.
Momoi (GRASP) on Tuesday?

• Extension of Nakajima &
Tanaka’s technique (1988);
with polarization Ota et al
(2010) – both utilize DOM

• Phase matrix truncation +
correction of higher orders of
scattering (3 orders)

• No help from the original
developer, who believes that:

Job Type Task Purpose

Software Translate into C Seamless integration with data processing part

Software Documentation Future support & development cost minimization

Software GitHub / GitLab Same + debugging + NASA’s Open-Source Science

Software Professional code review Bring expertise from a skilled software engineer

Model Spherical-shell Low SZA & VZA; hybrid scan

Model Linearization Jacobians for inversion

Model Output at given height Elevated stations (e.g., MLO)

Science Skip polarization in higher

scattering orders

Further acceleration

Computing Interface for parallel runs Faster calculation of the Jacobians and/or data processing

Computing Support of GPU Yet more faster runs

Image credit:

How about [scientific] software ?

Maybe “it works” well and needs no further development ?

Overlooked?

Forgotten?

Ignored?

Underappreciated?

“Scientists spend an

increasing amount of time

building and using software.

However, most scientists

are never taught how to do

this efficiently. As a result,

many are unaware of tools

and practices that would

allow them to write more

reliable and maintainable

code with less effort.

…

Write program for people,

not computers. ... “

Wilson + 12 (Canada, UK,

US), “Best Practices for

Scientific Computing”,

PLOS Biology (2014)

“…we also demonstrate how

moving to programming languages

with high momentum, like modern

C++, can help improve the

sustainability, interoperability, and

performance of research software.”

Anzt et al., “Then and Now:

Improving Software Portability,

Productivity, and 100 x

Performance”, Computing in

Science & Engineering (2024)

“The more frequently a program is changed, the more difficult it is to maintain its correctness.

Scientific programs are frequently changed throughout their lifetimes, not just when they’re

young. For most scientific programs, the rate of change doesn’t decrease significantly even

after many years. Like sharks, scientific programs that aren’t moving are dead.”

Dubois, “Maintaining correctness in scientific programs”,

Computing in Science & Engineering (2005)

“…several authors have argued that the “gap” or “chasm” between software engineering and

scientific programming is a serious risk to the production of reliable scientific results, as

demonstrated in a number of case studies.”

Storer, “Bridging the Chasm: A Survey of Software Engineering Practice in Scientific

Programming”, ACM Computing Surveys (2017)

Roberts “The publication of scientific Fortran

programs” (1969) & “Practical techniques in

computer programming” (1971) in Computer

Physics Communications

“A critical challenge in scientific computing is

balancing developing high-quality software with

the need for immediate scientific progress.”

Adorf et al., “How to Professionally Develop

Reusable Scientific Software—And When Not

To”, Computing in Science & Engineering, (2019)

Light Scattering by Spheroids
Acknowledgments:

• SK received FORTRAN sources from T. Lapyonok & O. Dubovik in September 2012 (AL recived it way before)

• MAIAC has used the sources since then: SK – as is, AL – dropped polarization and converted the sources into C

• From O. Dubovik (private communication 2023/10/23 over email):
 “…we do have new version and plan to have radically new one …”

• Anyone interested should refer to the GRASP website for a newer
 version of the (so called) spheroidal or DLS package

Reasons for refactoring:

• SK is learning things

• Numerical optimization (for our tasks)
• Integrate over the size parameter x = r / λ, not r

• Use the fixed kernels grid – drop all splines

• Improved interpolation of “polarized” elements

• Remove ASCII format & hard-coded parameters

• Fixed kernels generator – must be a separate code

• Clean up the code, convert to C (phase matrix)

https://github.com/korkins/spheroids (code creating Fixed Kernels is yet to be refactored)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0 30 60 90 120 150 180

-F12/F11

-0.1

0.0

0.1

0.2

0.3

0.01

0.1

1

10

100

1000

0 30 60 90 120 150 180

F11

Original DLS

DLS vs CPP in %

Test Case 1

Test Case 2

magnitude (a.u.)
error (%)

LBL Atmospheric Absorption
(1) Original LBL code is part of another package:

(2) Paper under review: “A Practical Guide to Coding Line-by-line Trace Gas Absorption in Earth’s Atmosphere”

(3) Open-source code for LBL absorption in gas cell (GCELL.cpp) and atmosphere (ASPECT.cpp):

https://github.com/korkins/aspect_gcell

2a: one Voigt line 2b: Gas cell (no line mix) 2c: MODTRAN profiles

Practical example for OCI: scaling of

OT(WV) = WV x OT(1.43 cm) / 1.43

vs. true calculation

	Slide 1

