

Analysis of daytime precipitable water vapor time series in L'Aquila (Italy) with long-term sun-photometer, GNSS and radiosondes data

Andrea Balotti^{*1,2} Marco Iarlori^{1,2} Raffaele Lidori^{1,2} Saverio Di Favio^{1,2} Emanuele Avocone^{1,2} Vincenzo Rizi^{1,2}

¹Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy ²Center of Excellence Telesensing of Environment and Model Prediction of Severe events (CETEMPS), 67100, L'Aquila, Italy

Goal

To characterize the precipitable water vapor (PV) column at the L'Aquila site at various timescale (years up to hours).

Observation site

2) Time series analysis of monthly PV

- No clear trend, even if slightly positive for RS/GNSS.
- Mean PV is about 1.4 cm (RS/AERONET) and 1.7 cm (GNSS).

Monthly averages

	1		

- <u>L'Aquila site</u>: 42.368° N, 13.350° E, 680 m. ASL.
- The site lies in the bottom of a valley within the Italian Apennines mountain range, and surrounded by high mountains above 2000 meters ASL.

Data and methods

- <u>Instrument:</u> Cimel CE318-N (AERONET #856, "LAQUILA_Coppito" site)
 - Data range: from April 2015 to December 2023

3) Annual cycle of PV

- Typical pattern for northern hemisphere.
- AERONET has lowest mean values (white line inside box), except in Winter.

- Instrument: Leica AR20 + Leica GR30 (currently).
- Data range: from April 2015 to December 2023 (instrument operated since 1999).
- <u>Data type</u>: hourly Zenith Total Delay (ZTD) observations.

• <u>Processing</u>: Zenith Hydrostatic Delay (ZHD) from ERA5 sealevel pressure scaled with barometric formula. Convert the Zenith Wet Delay (ZWD) into PV though II factor obtained from RS climatology, see [1]. Retain observation if in ± 1 hour from AERONET observation.

- Instrument: Vaisala RS-92 and RS-41.
- Data range: from April 1994 to December 2023.
- *Data type*: temperature (T) and relative humidity (RH) profile.
- Processing: reject the profile if RH > 95%. Convert RH into PV using saturation water vapor pressure and T.

Discussion

I 2 3 4 5 6 7 8 9 10 11 12 Month

4) Daily cycle of PV

- Higher variability of PV in Spring/Summer.
- The local minimum around 9-10 UTC is found in other studies, see [2].
- The hourly wind vector does not suggest any strong correlation of local orographic breeze with the local minimum.

Conclusions

 The three observation methods are highly correlated, but AERONET tends to provide lower values respect to RS/GNSS, and the residuals increases as

1) Comparison of instruments on co-located PV observations

- Use AERONET/GNSS observation that is nearest to RS launch time in ±1 hour windows (31 co-located observations).
- All the instruments are highly correlated at statistically significant level.
- AERONET has a negative bias (MBE) respect RS/GNSS, and residuals increases as PV increases.

	r	p-value	MBE [cm]
RS–AERONET	0.983	$< 10^{-5}$	$-0.22 \\ 0.07 \\ -0.29$
RS–GNSS	0.991	$< 10^{-5}$	
GNSS–AERONET	0.981	$< 10^{-5}$	

PV increases.

- The annual cycle shows a **typical pattern** that can be found also in literature.
- Daily cycle has higher variability in Summer, and a local minimum at the end of the morning but this seems not likely due to orographic breeze.

References

- [1] P. Basili, S. Bonafoni, R. Ferrara, P. Ciotti, E. Fionda, and R. Arnbrosini. Atmospheric water vapor retrieval by means of both a GPS network and a microwave radiometer during an experimental campaign in Cagliari, Italy, in 1999. IEEE transactions on geoscience and remote sensing, 39(11):2436–2443, 2001.
- [2] A. Memmo, E. Fionda, T. Paolucci, D. Cimini, R. Ferretti, S. Bonafoni, and P. Ciotti. Comparison of MM5 integrated water vapor with microwave radiometer, GPS, and radiosonde measurements. 43(5):1050–1058, 2005.

We would like to acknowledge the AERONET Network for the sun-photometer data, the Italian Space Agency (ASI) for the GNSS data, and the Italian Ministry of Education for the funds for radiosoundings.

AERONET Science and Application Exchange

17-19 September 2024

*Contact: andrea.balotti@graduate.univaq.it