Neural Network Model to Retrieve Solar Shortwave Irradiance from All-sky Camera Images

Daniel González-Fernández^{1,*}, Roberto Román¹, David Mateos¹, Celia Herrero del Barrio¹, Victoria E. Cachorro¹, Gustavo Copes², Ricardo Sánchez², Rosa D. García^{3,4,1}, Lionel Doppler⁵, Sara Herrero-Anta¹, Juan Carlos Antuña-Sánchez^{6,1}, África Barreto^{4,1}, Ramiro González¹, Javier Gatón¹, Abel Calle¹, Carlos Toledano¹, and Ángel de Frutos¹

*Correspondence: <u>daniel@goa.uva.es</u>

¹Group of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, 47011, Valladolid, Spain ²Servicio Meteorológico Nacional, Argentina ³Tragsatec, Madrid, Spain

⁴Izaña Atmospheric Research Center, Meteorological State Agency Spain (AEMet), Spain of ⁵Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg - Richard-Assmann-Observatorium (DWD) MOL-RAO), Lindenberg (Tauche), Germany ⁶GRASP-SAS, Villeneuve d'Ascq, France

Introduction

The present work proposes a new model, based on a convolutional neural network (CNN), to retrieve the solar global horizontal irradiance (GHI) through the cloud modification factor (CMF) estimation, from daytime sky images captured by all-sky cameras; this model is named as CNN-CMF.

Instrumentation and Sites

Dataset Classification

All the data have been filtered to avoid	The filtered datasets have been				
noisy results that introduce a high	classified as follows:				
uncertainty in the CMF values: 1) 237669 sky images classified for					
 Solar zenith angle (SZA)>85°. 	training and test the model at				
• GHI<5 Wm ⁻² .	Valladolid, Izaña and Lindenberg.				
• $ GHI-GHI\pm 1_{min} > 30\%$.	2) 57852 sky images classified at				

1) Instruments:

a) All-sky cameras:

- OMEA-3C (*Alcor System*) model.
- Controlled by the GOA-OMEA Capture application.
- Configured to take daytime images every 5 minutes.
- 8-bits High Dynamic Range (HDR) 2000x2000-pixel pictures.

b) Pyranometers:

EKO Instruments:

• Kipp & Zonen:

★ CM-22

2) Sites:

***** Valladolid (41.66°N, 4.71°W, 705m) **†** Izaña (28.30°N, 16.49°W, 2400m) **★** Lindenberg (52.21°N, 14.12°E, 122m) Marambio (64.24°S, 56.52°W, 200m)

GHI Results

Comparing the predicted GHI values against the pyranometer measurements at Marambio, the results show correlation with a R² value of 0.95. Some data pairs present high dispersion, which provides a higher value of SD about 26%, while the obtained MBE is about 2%.

Marambio to evaluate the model.

Site	Initial dataset	Filtered dataset	Train dataset	Validation dataset	Test dataset
Valladolid	82865	70962	25654	7096	38212
Izaña	46509	41327	6104	4133	31090
Lindenberg	146575	125380	54679	12539	58072
Total	275949	237669	86527	23768	127374

Model

CNN-CMF model:

- Designed with Keras.
- Processes 128x128x3 pixel HDR sky images.

- Uses data augmentation to increase variety and reduce correlation.
- Training uses mean squared error (MSE) loss with the Adam optimizer and dynamic learning rates.
- Preventing overfitting stops training if validation set loss is not improved for 10 consecutive epochs.

 $CMF = \frac{GHI_{meas}}{GHI_{cf}} \longrightarrow$ 'meas': measurements and 'cf': cloud-free. GHI_{cf} are simulated with the libRadtran-2.0.5 package.

All-sky images \longrightarrow classified in [0.01, 1.30] every 0.01 CMF value.

- Model's test gives high correlation between the measurements and the predicted values with a R^2 of 0.97.
- The standard deviation (SD) is around 9% and the mean bias error (MBE) is near -2%.

GHI Daily Results

In this case, the comparison between the model and the measured values show higher correlation with a R² of 1.00. The SD presents better precision with a value near 11%, while the MBE is now around 3%.

References

- Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
- Chollet, F. et al.: Keras, https://keras.io, 2015.
- González-Fernández, D. et al.: A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctic, QJRMS, 1–19, 2024.
- Mayer, B. et al.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. Atmospheric Chemistry and Physics, 5, 1855–1877, 2005.
- Román, R. et al.: Uncertainty and variability in satellite-based water vapor column, aerosol optical Depth and Angstrom exponent, and its effect on radiative transfer simulations in the Iberian Peninsula. Atmospheric Environment, 89, 556 – 569, 2014.

ACKNOWLEDGMENTS

This research has been supported by the Ministerio de Ciencia e Innovación (MICINN), with the grant no. PID2021-127588OB-I00. This work is part of the project TED2021-131211B-I00375 funded by MCIN/AEI/10.13039/501100011033 and European Union, "NextGenerationEU"/PRTR, and is based on work from COST Action CA21119 HARMONIA.

Conclusions

- We recommend using the model for GHI time series reconstruction and comparing the model with other measurements to enhance uncertainty quantification.
- While pyranometers remain the gold standard for monitoring solar irradiance, this model offers a viable alternative proving to be a good proxy for estimating GHI.
- Future work will involve using long-term series to reconstruct shortwave radiation values and assess the model's ability to predict trends observed in periods like global brightening or dimming.