Assessing health implications due to aerosol dynamics and climate trends using ground-based and Satellite observations

K. Asare, R. Damoah; C. E. Doe; T. Narh; M. Addi; S. K. Fosuhene; J. Quansah; F. O. Agyemang

Ghana Space Science and Technology Institute <u>kofi.asare@gaec.gov.gh</u>

AERONET Science Application Exchange September 17 – 19, 2024

Outline

- Background
- Objectives of the Study
- Data and Methods
- Overview of Koforidua's Climate and Air Quality
- Key findings
 - Climate trends
 - Comparing Ground-Based and Satellite Data
 - Seasonal Cycle Captured by OMI and MODIS
 - Health implications
- Conclusion

Background

- Limited access to aerosol measurements, which are crucial for understanding public health impacts (Dzando et al., 2022).
- The reliance on satellite technology for aerosol observations, such as MODIS, OMI etc presents certain limitations, including potential discrepancies in data accuracy and coverage (Vohra et al., 2020; , Li et al., 2014)
- The seasonal climate variations in Ghana significantly influence public health
- Air pollution, has been linked to various health issues, including respiratory diseases and increased mortality rates (Gyasi et al., 2022)
- The unique climatic conditions in Ghana exacerbate these health risks by elevating the concentrations of harmful aerosols in the atmosphere <u>(Gyasi et al., 2022)</u>.

Objectives

•To Analyze Aerosol Dynamics

• Validate existing ground-based with satellite measurement

•To Examine Climate Trends

•To Evaluate Health Implications

Data and Methods

• Data Collection: - Ground-based AOD from the AERONET station at ANU (2017 - 2022)

• Satellite data

• Modis and OMI – 2017 – 2022 (500nm)

Climate data from Ghana Meteorological Agency

• Rainfall and temperature - 1980 - 2022

Health data from health facility

• Respiratory diseases – 2017 - 2022

• Statistical analyses:

• Compared AOD values from ground-based and satellite sources and assessed the correlation <u>(Anderson et al., 2013;</u>, <u>Li et al., 2013)</u>.

Overview of Kotoridua's Climate and Air

Quality •Location: Koforidua is located in the Eastern Region of Ghana, characterized by tropical climate with distinct wet and dry seasons.

• Air Quality Profile:

- Natural Sources: Dust storms (especially during Harmattan)
- Anthropogenic Sources: Vehicular emissions, open burning, industrial activities, and urbanization.

Climate Trends

•Climate Trends:

- •Variable rainfall
- •Day and night temperature increasing
- •Extreme events
 - •Floods
 - Drought

Seasonal cycle of climate at Koforidua

Koforidua experiences bi-modal rainfall

regime

- First peak June Second peak – September
- Day temperature peaks in February 35°C
- Night temperature peaks in April 21.5
- The peaks of temperature coincides with the peak of aerosols
- The climate variables reaches their minimum in August which also aligns with aerosols

Comparism of satellite and ground measurement

- Seasonal Variations in Aerosols:
- Both **OMI** and **MODIS** satellite data effectively capture the **seasonal cycle** of aerosol concentrations in Koforidua.
- Harmattan Season (Dry Season): Higher aerosol concentrations during the dry season due to dust transport from the Sahara, visible in both satellite and ground measurements.
- Wet Season: Aerosol concentrations are lower in the wet season, as rainfall tends to cleanse the atmosphere of particulate matter.
- Although both OMI and MODIS detect the same seasonal trends, they differ in their estimates of aerosol amounts

Strong Correlation Between Ground-Based and Satellite

Data

 A strong positive correlation (e.g., r = 0.84 to 0.92) was observed between MODIS AOD

• MODIS captures the temporal variability of aerosol concentrations well, showing consistency with daily and seasonal patterns observed on the ground.

OMI AOD values also demonstrate a **strong correlation** with observed (**r = 0.71** to **0.77**), validating the satellite's ability to detect aerosol trends.

Although OMI tends to **underestimate AOD** during certain periods, the overall trend matches ground observations, particularly during high aerosol periods like the **Harmattan**.

Strong Correlation Between Ground-Based and Satellite Data

Both **MODIS** and **OMI** show a high degree of correlation with ground measurements, confirming their utility in tracking aerosol dynamics, though with some differences in magnitude.

Reported cases of Respiratory diseases

Reported cases of Respiratory diseases:

Peak in July High in the dry season When Aerosol is high

Correlation between Aerosol and Respiratory Diseases

2018

- Moderate correlation between aerosols and respiratory diseases. –
- Low correlation for MODIS data. Strong correlation for OMI data.

2020

- Increased correlation for aerosols and MODIS. Decreased correlation for OMI.
- Suggests changing dynamics in air quality and health impacts.

Source/Year	2018	2020
Aerosol	0.48	0.63
Modis	0.14	0.73
OMI	0.62	0.37

Conclusion

• Complementary Nature:

 Ground-based measurements and satellite observations are complementary. Satellite data provides a broader perspective, while ground-based sensors offer higher accuracy and localized insights.

• Key Validation Insights:

- Both **OMI** and **MODIS** satellite data effectively capture the **seasonal cycle** of aerosols in Koforidua, confirming the **temporal trends** observed on the ground.
- However, satellite data may differ slightly in **estimating the amount** of aerosols, highlighting the need for **continuous ground validation**.

• Moving Forward:

 Ongoing efforts should focus on further improving the integration of ground-based and satellite measurements for more accurate aerosol monitoring and health impact assessments in Koforidua.

Conclusion

- Correlation analysis highlights the complex relationship between air pollution and respiratory health. Strengthened correlations for aerosol and MODIS data suggest increasing relevance.
- Ongoing research is essential for understanding health implications of air quality also looking demography and gender.
- The increasing correlation of aerosol measurements and MODIS with respiratory diseases emphasizes the need for continued monitoring and research