

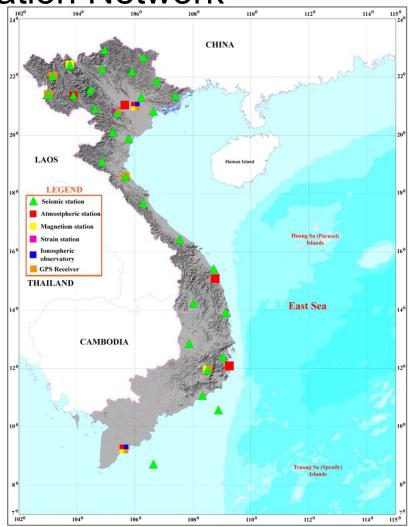
Vietnam Academy of Science and Technology (VAST) Institute of Geophysics (IGP)

Introduction to Aerosol-Related Research at IGP, VAST

N. X. Anh, P.X.Thanh, P. L. Khuong, N.N.Vinh, B.N.Minh IGP,VAST

Email: nxuananh05@gmail.com

ASAE,17-19 September 2024

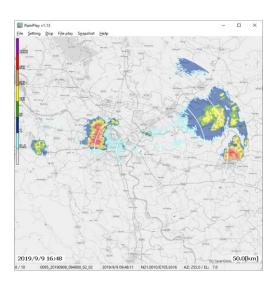

2. Aerosol-Related Research Results

3. Possible connections to 7-SEAS in the near future

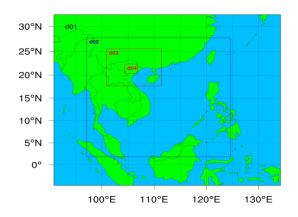
IGP National Geophysical Station Network

Climate in Vietnam

- Monsoon;
- Complicated Topography;
- Long Coast;
- Typhoons(8/years);
- Floods, droughts;
- 100 rainy days
- (1,500 to 2,000mm)
- Humidity (80%)
- The sunny hours (2,000)
- 100 kcal/cm2 in a year.
- 7 climatic zones
- (35 microclimatic zones)

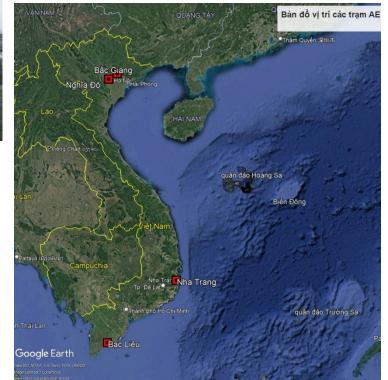


IGP Hanoi Atmospheric Station Network



- AErosol RObotic NETwork AERONET (2003)
- Program to Study Pollution-Meteorology Feedbacks in Southeast Asia -7 SEAS (2007)
- Micro-Pulse Lidar Network MPLNET (2011)
- 7-SEAS/BASELINE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment (2012)

AERONET DATA in Vietnam



Nghia Do station (from 2010)

http://aeronet.gsfc.nasa.gov/

Bac Giang station (2003-2009)

Nha Trang station (2011-2014)

Bac Lieu station (from 2003)

Duration of observation at AERONET sites in Vietnam

Level 2.0

- Bac Giang: 634 days
- Nha Trang: 368 days

The MODIS/Terra data:

Artist' view of the Terra spacecraft in orbit (image credit: NASA) http://www2.hawaii.edu/~jmaurer/terra/

- Nghia Do: 253 days
- Bac Lieu: 759 days

- Level 2.0 MODIS data (MOD_L2) from the Terra platform
- Spatial resolution of a 10x10km

V.A.S.T

Methods

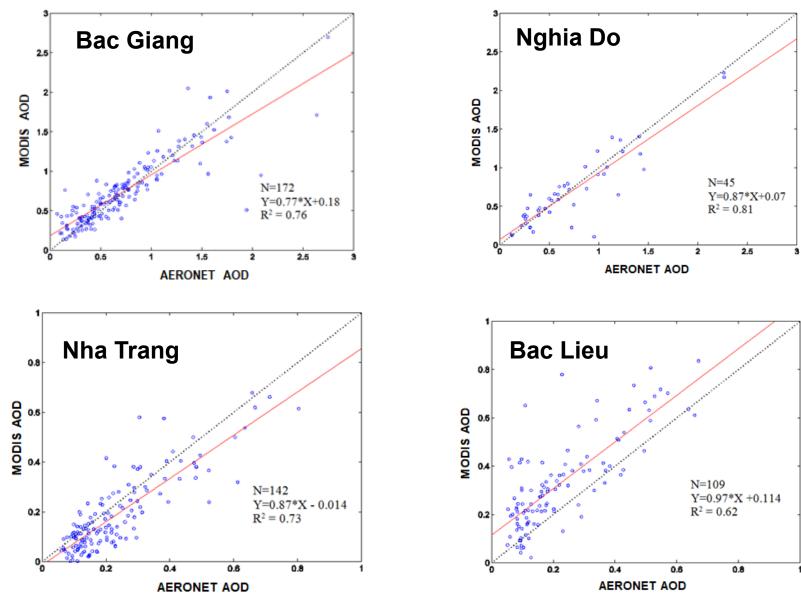
Calculate the MODIS data

- Retrieve MODIS AOD in a square box of 50 km x 50 km (5x5 pixels) centered over AERONET sites.

- Interpolate the AOD value of pixels to AERONET sites.

Calculate the AERONET data

- Retrieve AERONET AOD within ±15 min of the MODIS overpass time


- Interpolate the AOD value at 0.55µm from the AOD value at 0.50µm *(Eck et al, 1999; Tripathi et al.*, 2005)

$$\tau_{0.55\,\mu m} = \frac{\tau_{0.5\,\mu m}}{e^{-\alpha_{0.44\,\mu m-0.67\,\mu m} \ln \frac{0.5}{0.55}}}$$

Comparison of AOD from MODIS and AERONET

V.A.S.T

Scatter plot between AOD derived from MODIS and AERONET

Results of comparison of MODIS AOD and AERONET AOD over Vietnam show that:

1, There is a good agreement/ between MODIS and AERONET at Bac Giang with the mean absolute difference =0.09; Roots mean square error =0.23; Correlation coefficient = 0.87.

2, There is a good coincidence between MODIS and AERONET at Nghia Do with the mean absolute difference =0.13; Roots mean square error =0.22; Correlation coefficient = 0.90.

3, MODIS underestimate at Nha Trang station with the mean absolute difference =0.05; Roots mean square error =0.09; Correlation coefficient = 0.85.

4, MODIS overestimate at Bac Lieu with the mean absolute difference =0.11; Roots mean square error =0.16; Correlation coefficient = 0.79.

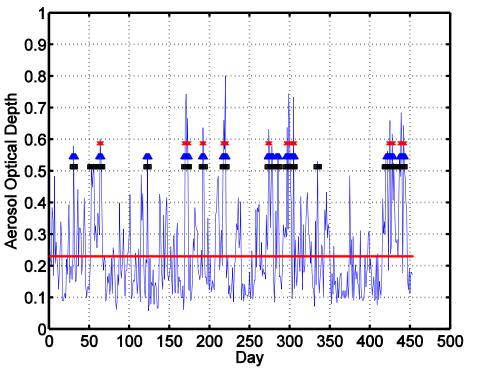
• AOD from AERONET (AErosol RObotic NETwork)

http://aeronet.gsfc.nasa.gov/data_menu.html

• AOD from MODIS (MODerate resolution Imaging Spectroradiometer)

ftp://windhoek.nascom.nasa.gov/pub/ridgway/daily_aod_binaries/

 Climate data from NCEP/DOE-2(the National Centers for Environmental Prediction/ Department of Energy – Reanalys 2)

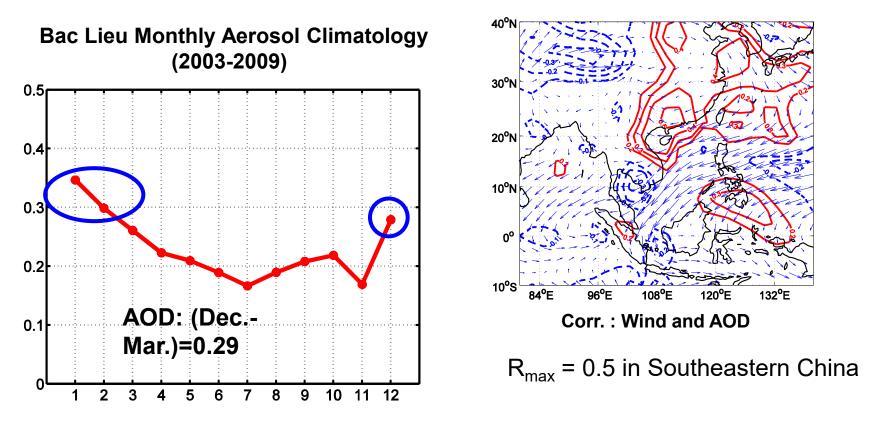

http://www.cdc.noaa.gov/cgi-bin/db_search/SearchMenus.pl

The Temporal Variability of AOD in Bac Lieu from AERONET Data

Variation of AOD in Bac Lieu (2003-2009)

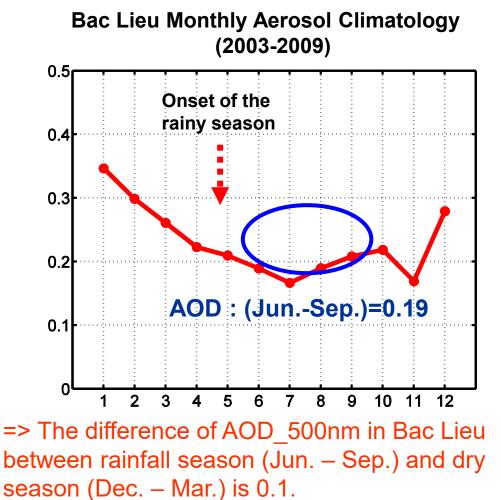
- Mean = 0.23; Std = 0.14
- Positive Anomaly level 1 (PA1)
 = Mean+1.86*std= 0.51
- Positive Anomaly level 2 (PA2)
 = Mean+1.86*std= 0.54
- Positive Anomaly level 1=
 = Mean+1.86*std= 0.59

PA1 : total = 35,

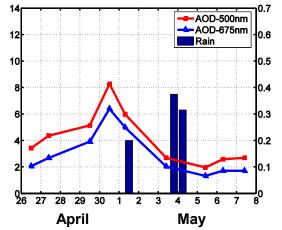

PA1 in (Dec.-Feb.) = 20.

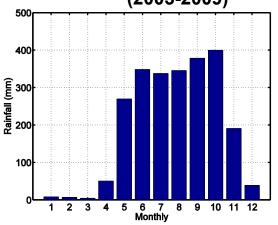
=> Positive Anomaly of AOD at Bac Lieu appears in the middle of Winter (December, Juanary and Febrary)

The Temporal Variability of AOD in Bac Lieu from AERONET Data


=> The variation of AOD in Bac is affected by the East Asia winter monsoon.

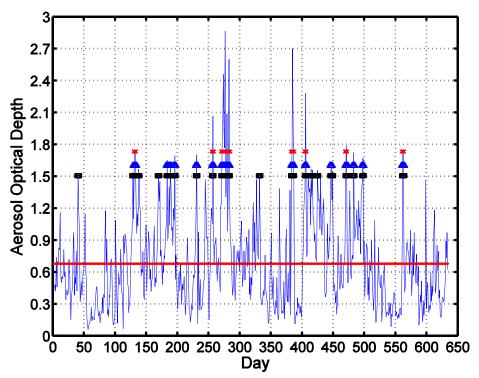
Pham X.T., Nguyen X.A. et al, 2012a




The Temporal Variability of AOD in Bac Lieu from AERONET Data

Onset of the rainy season in 2003

Bac Lieu Monthly Rainy Climatology (2003-2009)

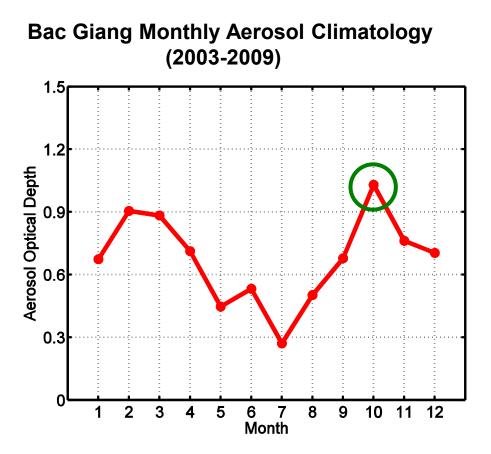

Pham X.T., Nguyen X.A et al, 2011

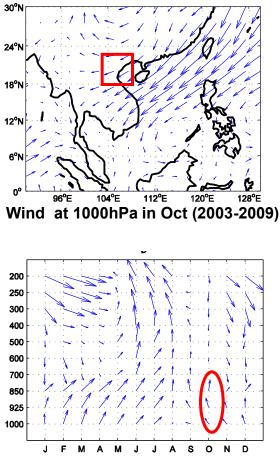
The Temporal Variability of AOD in Bac Giang from AERONET Data

Variation of AOD in Bac Giang (2003–2009)

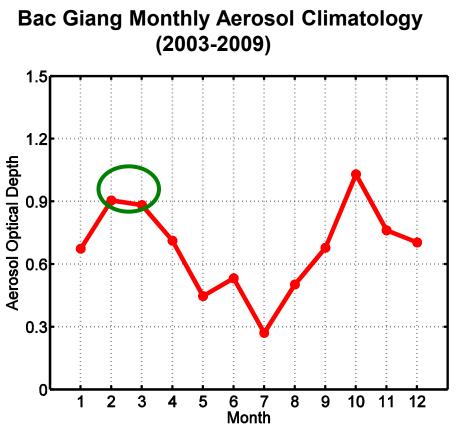
- Mean = 0.68; Std = 0.45
- Positive Anomaly level 1 (PA1) = Mean+1.86*std= 1.51
- Positive Anomaly level 2 (PA2)
 = Mean+1.86*std= 1.60
- Positive Anomaly level 1= = Mean+1.86*std= 1.73

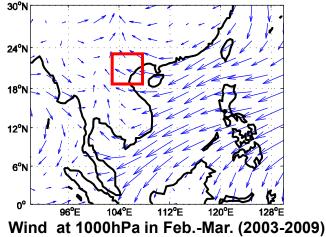
PA1: total = 38,

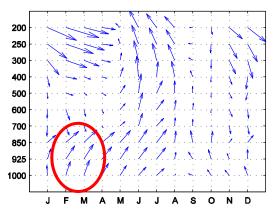

PA1 in (Oct.+Feb.+Mar.) = 18.


=> Positive Anomaly of AOD at Bac Giang appears in the early winter (October) and the last winter (February, March)

The Temporal Variability of AOD in Bac Giang from AERONET Data

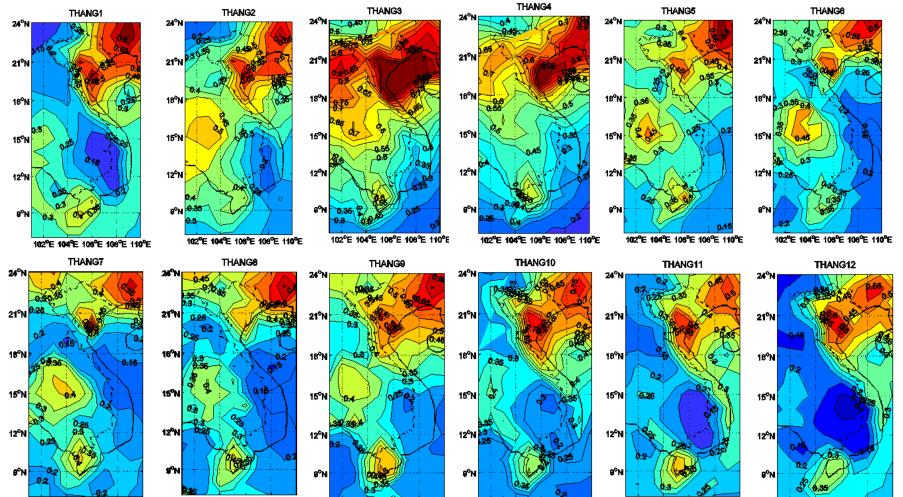

V & W wind in Northern Vietnam




The Temporal Variability of AOD in Bac Giang from AERONET Data

E VARIABILITY OF AOD OVER V

=> The circulation creates favorable conditions for the accumulation of aerosol particles in Bac Giang



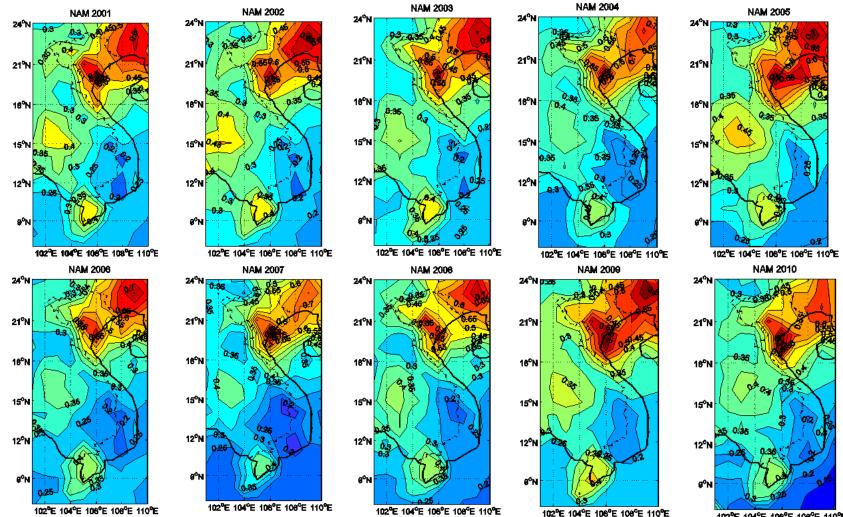
V & W wind in Northern Vietnam

The Spatial Variability of AOD from MODIS/Terra The monthly average of AOD (2001-2010)

102°E 104°E 106°E 106°E 110°E

102°E 104°E 106°E 106°E 110°E

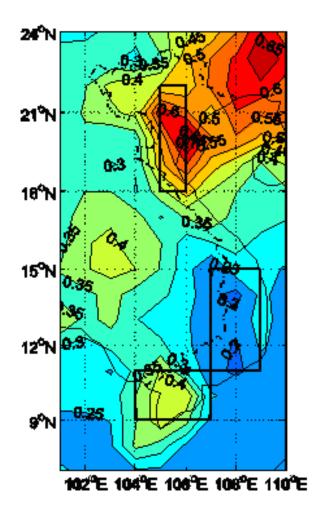
104'E 106'E 106'E 110'E


102°E 104°E 106°E 106°E 110°E

102°E 104°E 106°E 106°E 110°E

102°E 104°E 108°E 108°E 110°E

The Spatial Variability of AOD from MODIS/Terra The annual average of AOD (2001-2010)

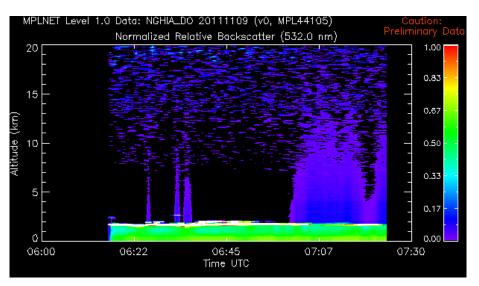


^{102°}E 104°E 106°E 108°E 110°E

The Spatial Variability of AOD from MODIS/Terra

The average of AOD (2001-2010)

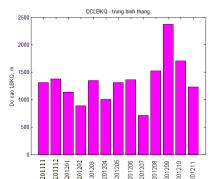
The territory of Viet Nam can be divided into 3 areas:

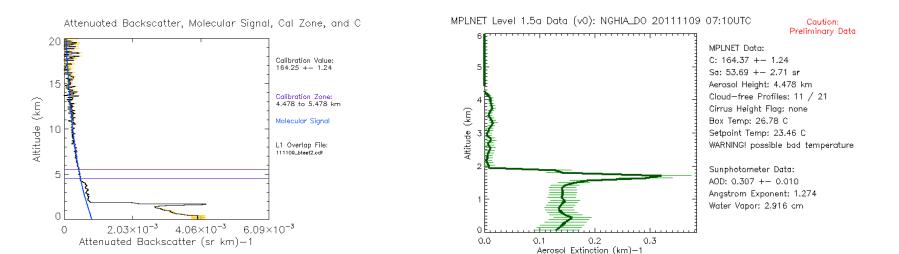

Northern Vietnam (18ºN-22ºN; 105ºE-106ºE) Average Year : AOD from 0.47 to 0.62

Center Vietnam (11^oN - 15^oN; 107^oE - 109^oE) Average Year : AOD from 0.23 to 0.30

Southern Vietnam (9°N- 11°N; 104°E-107°E) Average Year : AOD from 0.31 to 0.40

Nguyen X.A, Pham X.T., Do N.T, 2012b

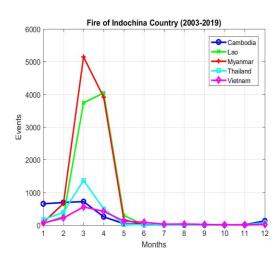

THE VARIABILITY OF AOD OVER VIET Hanoi MPLnet lidar station (Nov. 2011)

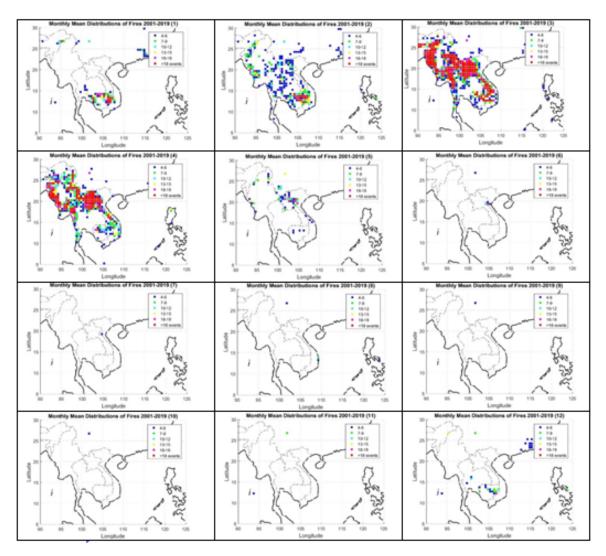


HOP

PBL Height in Hanoi

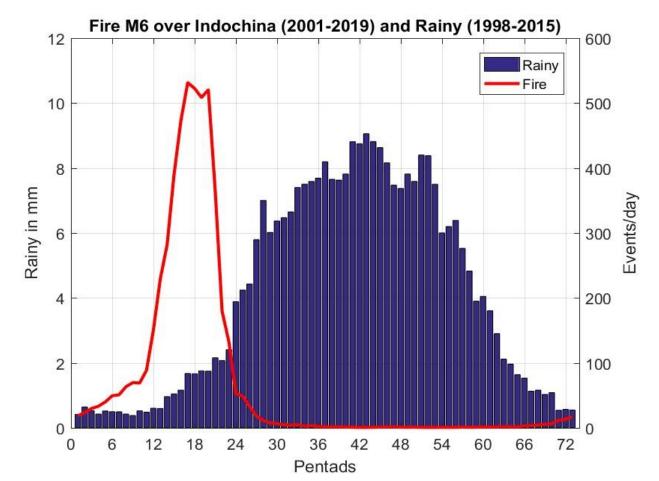
Remarks


- 1. The temporal variability of AOD obtained from AERONET shows that, in Bac Giang and Bac Lieu, the average of AOD is 0.68 and 0.23 during 2003-2009, respectively. Cycle annual of AOD at Bac Giang shows a maximum in the early winter (October) and the last winter (February, March). In which, the highest values of AOD in Bac Lieu appear in the middle of winter (December, January and February).
- 2. The winter monsoon circulations play an important role in the temporal variability of AOD in Bac Giang and Bac lieu.
- 3. The spatial variability of AOD derived from MODIS data shows that the territory of Viet Nam can be divided into 3 areas: Northern Vietnam, Center Vietnam and Southern Vietnam with the yearly AOD mean vary from 0.47 to 0.62, from 0.23 to 0.3, and from 0.31 to 0.40, respectively.

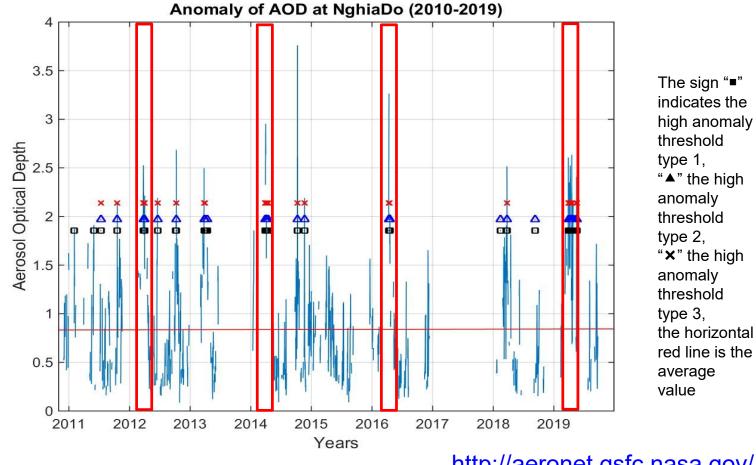


Effects of Fire Activity in Indochina on AOD in Hanoi

Fire Activity in Indochina (2001-2019): <u>https://firms2.modaps.eosdis.nasa.gov/active_fire/</u>



Yearly evolution of fire activity and rainfall in Indochina (10°N-25°N; 90°E-110°E).



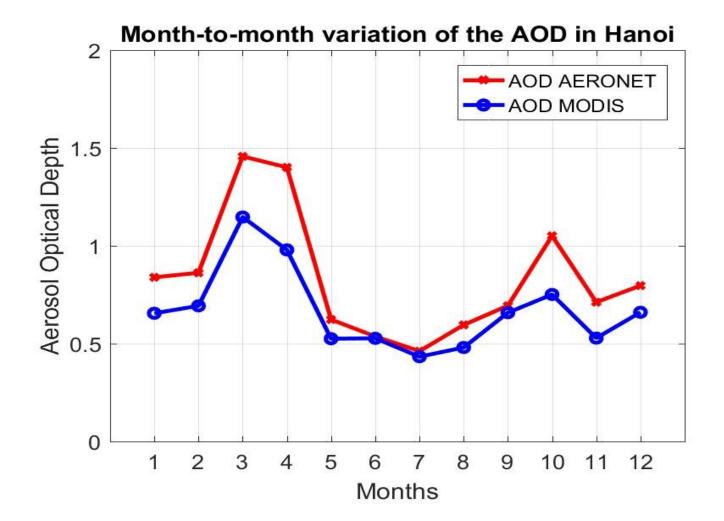
APHRODITE (Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation) (<u>http://www.chikyu.ac.jp/precip</u>)

Aerosol Optical Depth in Hanoi

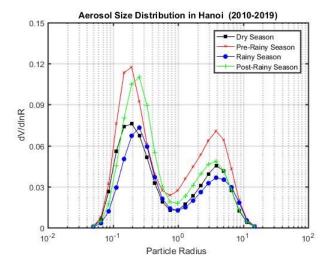
Daily mean of AOD (500nm) in Hanoi (2010-2019). \succ

Existence of AOD anomalies:

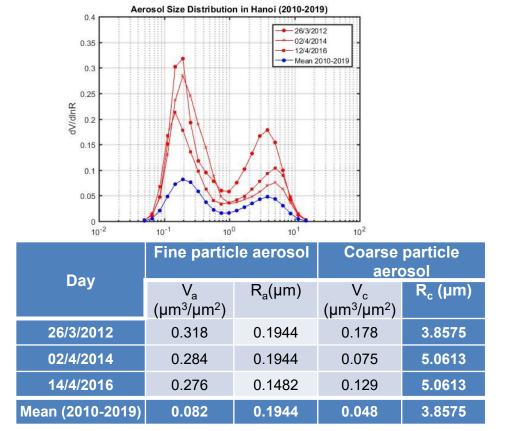
24-27/3/2012 12-14/4/2016


http://aeronet.gsfc.nasa.gov/

31/3-2/4/2014 11-14/4/2019


Month-to-month variation of AOD in Hanoi (2010-2019): Maximum in March-April & October; Minimum in July & November.

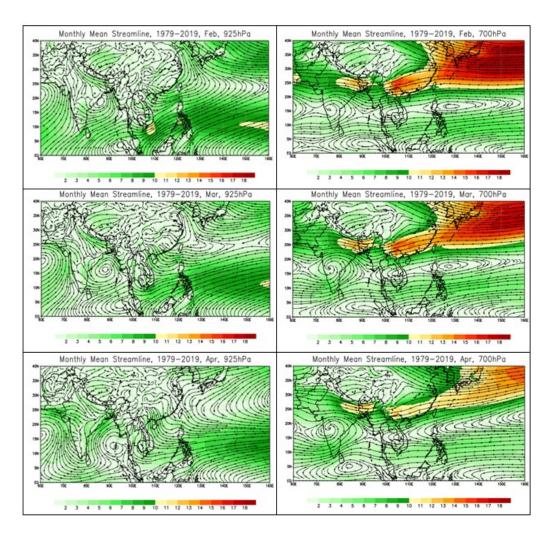
Aerosol Optical Depth in Hanoi



Size distribution of AOD (500nm) in Hanoi (2010-2019)

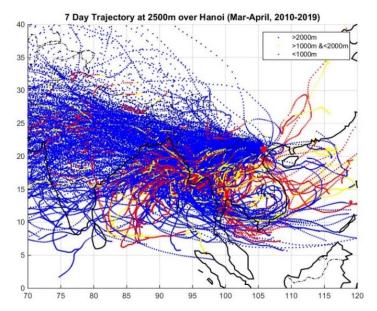
-Dry season (December, January, February),

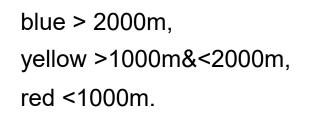
-Pre-rainy season (March, April), -Rainy season (June, July, August) -and post-rainy season (October)

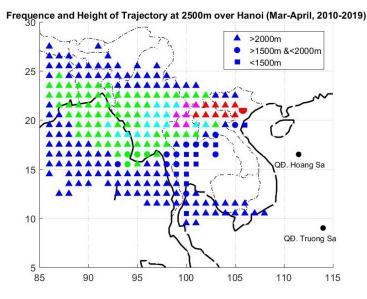


The fine-particle aerosol on transition period is about 1.5 times higher than that of the dry and rainy seasons.

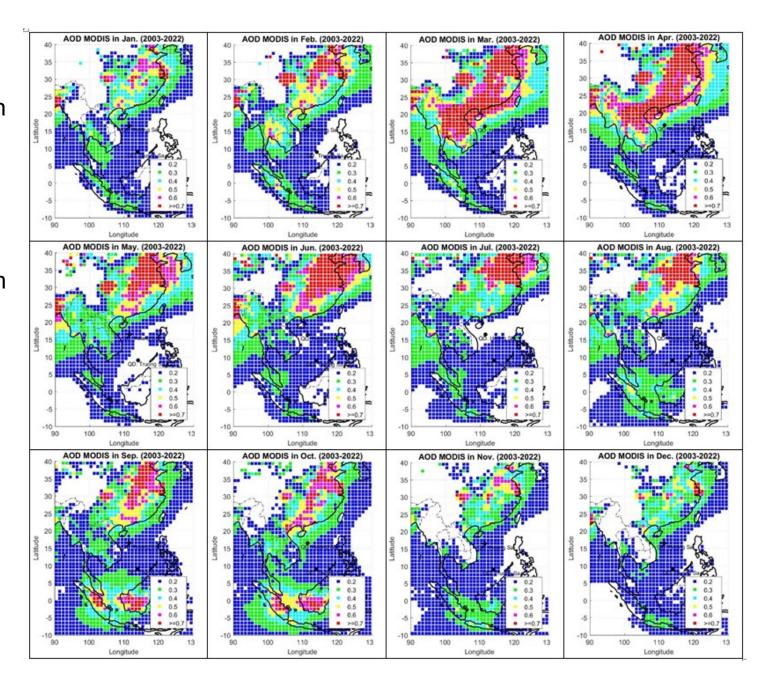
Effects of Fire Activity in Indochina on AOD in Hanoi


Monthly mean streamline charts (for the period 1979-2019) of large-scale circulation in Asia-Pacific for 700 and 925hPa, in February, March, and April, respectively.




Effects of Fire Activity in Indochina on AOD in Hanoi

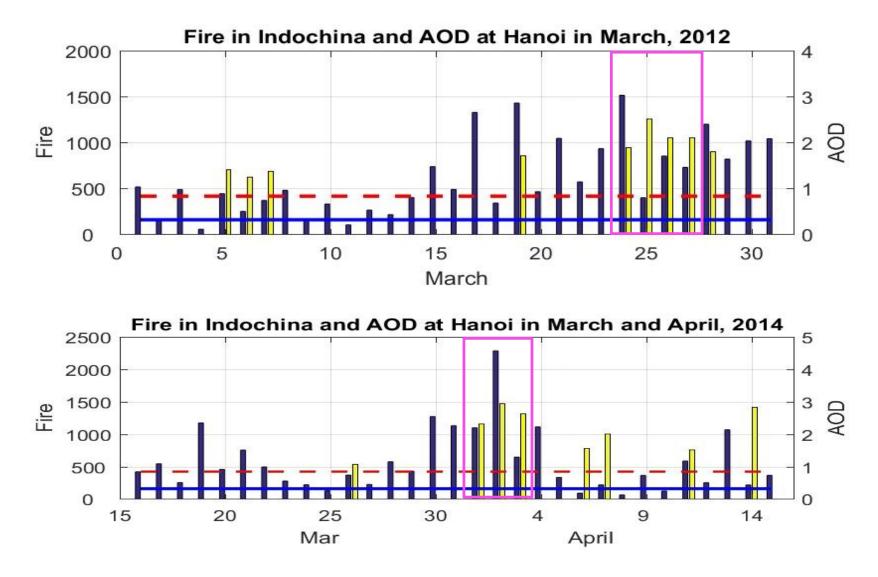
Collection of 610 HYSPLIT lines through the height of 2500m at Hanoi station in March and April (2010-2019):



blue ~ 10-50 times; green~51-100; cyan ~ 101-150 times; red >200 times. ▲>2000m, ●>1000&<2000m,

∎<1000m.

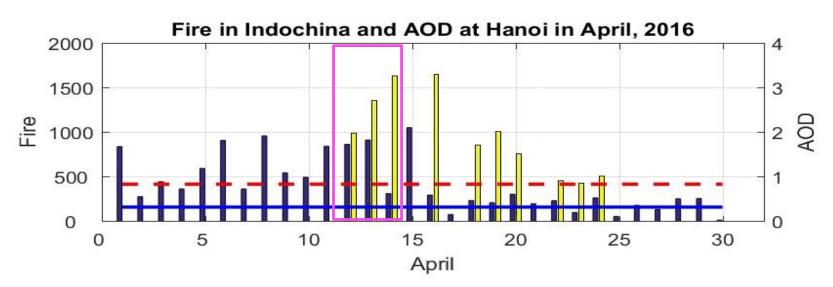
Monthly mean distribution of AOD (averaged for the period of 2003-2022) from MODIS data

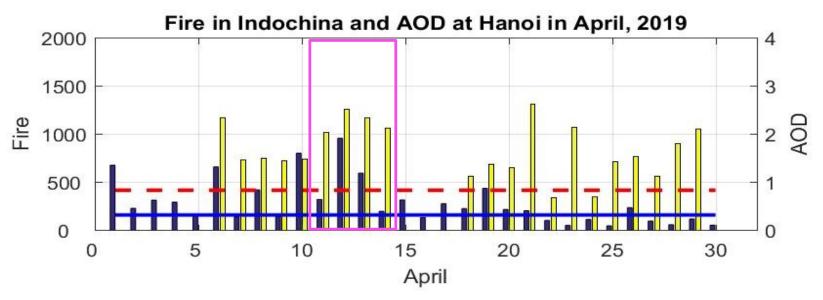


Fire activity and AOD during anomalous days :

JIEN VHI LY DIS

MIGP

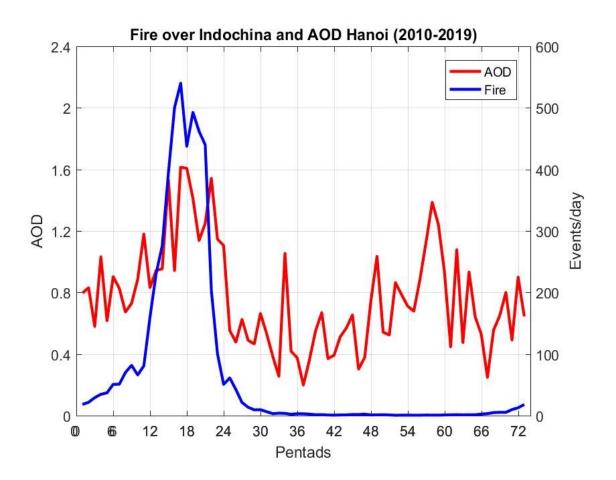




Fire activity and AOD during anomalous days:

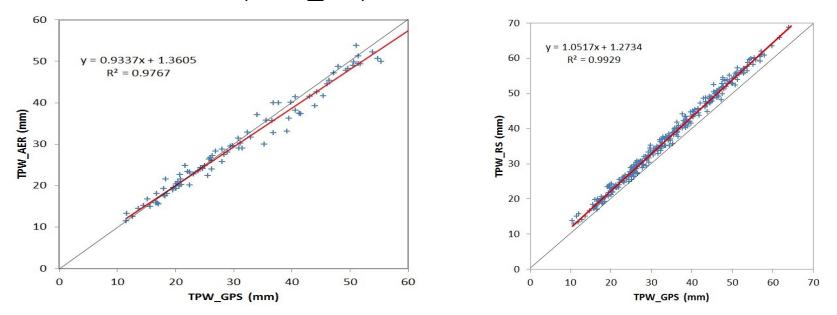
VHI LP

MIGP



Effects of Fire Activity in Indochina on AOD in Hanoi

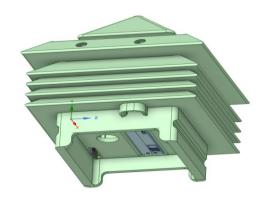
Annual variation of fire activity in Indochina and AOD in Hanoi: Correlation R=0.64; For Jan.-April, R=0.76.

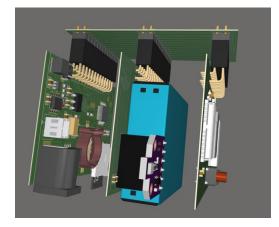


- Fire activity in Indochina take place from December of one year to May of the next year with a maximum in March.
- During the period 2010-2019, Hanoi AERONET station recorded 4 AOD anomalies times, in 2012, 2014, 2016 and 2019.
- Atmospheric circulation plays an important role in transporting aerosols from biomass burning in Indochina to Hanoi.
- The biomass burning activity in Indochina is closely related to the AOD in Hanoi.

Scatterplots of the average daily values of the estimated total precipitable water from GPS data (TPW_GPS), from AERONET data (TPW_AER) and from radiosonde data (TPW_RS) at Hanoi station.

	ME (mm)	MAE (mm)	RMSE (mm)
TPW_GPS and TPW_AER	0.68	1.53	2.05
TPW_GPS and TPW_RS	-3.01	3.01	3.24


GPS data can be effectively employed to define the arrival of cold surges in the station area


P.L. Khuong, N.X. Anh, et. al. 2024

low-cost PM2.5 sensor-based monitoring device

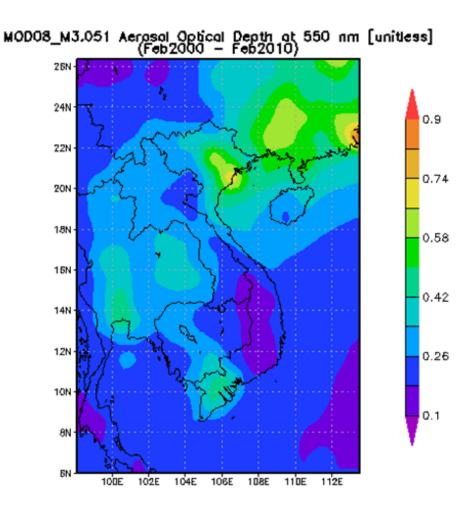
- -Meteorological sensor: BME680
- -Dust sensor: PMS7003
- -GPS module: NEO6-M
- -Microcontroller: STM32F103C8T6-RF
- Lora 433MHz: Ra-02
- -Wifi and bluetooth: ESP32 WROOM 32D-Memory card: 16G

Specifications

- Update rate: 1Hz
- Battery: 3.7V 1600mAh, operating time: 7 hours
- Data logger: SD card 8G, DRONE.CSV
- Size: Max 19cm x 8.5cm x 5.5cm
- Weight: 300g

Parameter	Value	Unit
Range of measurement	0.3 ~ 1.0 ; 1.0 ~ 2.5 ; 2.5 ~ 10	μm
Counting Efficiency	<u>50%@0.3μm</u> ; 98%@≥0.5μm	
Effective Range (PM2.5 standard)	0 ~ 500	µg/m³
Maximum Range (PM2.5 standard)	≥ 1000	µg/m³
Resolution	1	µg/m³
Maximum Consistency Error	±10%@100 ~ 500μ g/m³	
(PM2.5 standard data)	±10µ g/m³@0 ~ 100µ g/m³	
Standard Volume	0.1	Litre(L)

low-cost PM2.5 sensor-based monitoring device


•5 - c≥ · Home		Lavout For	nulas Dat	a Revis	w View	Help	ACROE	AT Pow	er Pivot	O Tell	me what w		00101_M_3 do												nii 🤐 I		
X Cut E⊇ Copy	Arial	•	11 × A	c = ;	- 🗐 🗧	e- 18	Wrap Text		General		•	Conditional	Format a Table -	Norma Calcu		Bad Check 0		iood xplanatory	Neutral			Delete For		- II -	ZY P Sort & Find & Filter ~ Select		
Dipboard	5	Font		5		Alignment		5	N	umber	5	ermatteng -	Hable -			Shies						Cells		Edit		Add-Ins	
	I X V	6																									
										M		0	P							1	Y				C AD		AF
	B C PM AVID PM01	DE				a 9					N II 1.0 unc Pl			Q te rrumb T	R he numb T	S he numb Th		U V e numb The n							NC ND	AE	~
Hour	Minute Se	cond Day	Month	Year	Temperahi	Pressure H	iumidity P	M10 sta Pt	12.5 sta Pt	ato star Pl	It 0 atry Pt	12.5 alty PI	10 atm 12	mber P.N	aumber P.N	umber P Na	mber P Nu	mber P Num	MAR BOPS AN	the Latitude	NS Indical I	contribute F	Windica All	thude Sne	ed Truecou	(SHDOP	Satellites
1	9 17	23	8 8	2024	30.73	100032	76.49	35	48 48	51	27	38	43 43	6828 6857	1455	226	18	3	1 V	0	0	0	0	0	0	0 99.99	
3	9 17 9 17	24	16 8 16 8	2024		100031 100032	76.44	35	48	51	27	38	43	6871	1452	228	19	3	-iv	0	0	0	0	0	0	0 99.99	
4	9 17	26 :	8 8	2024	30.75	100031	76.37	35	48	51	27	38	43	6876	1428	228	18	3	1 V	0	ő	0	0	0	0	0 99.99	0
6	9 17		15 8 15 8	2024		100030 100031	76.33 76.28	35	48	51	27	38	43 43	6871	1412 1392	228	18	3	1	0	0	0	0	0	0	0 99.99	
7	9 17	29	8 8	2024	30.79	100030	76.24	35	48	51	27	38	43	6851	1373	224	18	3	iv	ő	ŏ	ő	ő	ŏ	ŏ	0 99.99	0
8	9 17 9 17		25 8 26 8	2024 2024	30.8 30.81	100031 100030	76.19	35 35	48	51	27	37	43 43	6839 6824	1352	221	18 18	3	1 1	0	0	0	0	0	0	0 99.99	
10	9 17	32	16 8	2024	30.83	100031	76.12	35	47	51	27	37	43	6815	1306	217	18	3	1 V	ő	ő	ő	ŏ	ŏ	ő	0 99.99	
11	9 17 9 17		15 8 15 8	2024 2024		100032	76.09	35 35	47	51	27 26	37	43 43	6801 6788	1282 1262	215	17	3	1 V	0	0	0	0	0	0	0 99.99	
12	9 17		75 8 16 8	2024		100032	76.05	35	47	51	26	37	43	6771	1262	216	17	3	1	0	0	0	0	0	0	0 99.99	
14	9 17	35	8 8	2024	30.89	100032	76	34	47	50	26	37	43	6743	1242	222	18	3	1 V	0	0	0	ō	0	ō	0 99.99	0
15 16	9 17 9 17		26 8 26 8	2024 2024		100033 100032	75.99	34 34	47	50 50	26	37 37	43 43	6700 6650	1237	225 228	19	3	1	0	0	0	0	0	0	0 99.99	
17	9 17	39 3	8 8	2024	30.93	100032	75.93	33	47	50	26	37	43	6599	1238	229	20	3	1 V	Ő	0	Ő	ő	ŏ	ő	0 99.99	0
18	9 17 9 17		8 8	2024		100031 100032	75.89	33	47	50 50	26	37	43 43	6552 6511	1240	230	20	3	1 V	0	0	0	0	0	0	0 99.99	
20	9 17		25 8 26 8	2024		100032	75.88	33	47	50	26 26	37	43	6477	1247	231	20 20	3	1	0	0	0	0	0	0	0 99.99	
21	9 17	43	8 8	2024	31.11	100028	75.84	33	47	50	26	37	43	6461	1270	230	19	3	1 V	0	0	0	0	0	0	0 99.99	
22	9 17 9 17		8 8	2024		100021 100013	75.74	33	46	50 50	28	37	42	6461	1286	229	19 19	3	1	0	0	0	0	0	0	0 99.99	
24	9 17	46 3	8 8	2024	31.26	100004	75.4	33	46	50	26	37	42	6518	1315	225	18	3	1 V	0	0	Ő	ŏ	ő	ő	0 99.99	0
25 25	9 17 9 17		16 8 25 8	2024	31.29	99994 99983.4	75.22	33	46 46	50 50	28 25	37	42 43	6552 6582	1325 1328	225	18	3	1 V	0	0	0	0	0	0	0 99.99	
27	9 17		8 8	2024		99903.4	74.89	33	46	50	26	37	42	6600	1328	219	17	3	11	0	0	0	0	0	0	0 99.99	
28	9 17	50	16 8	2024	31.37	99960.4	74.75	33	46	50	26	37	42	6605	1308	214	16	3	1 V	0	0	0	0	0	0	0 99.99	
29 30	9 17 9 17	51 52	16 8 16 8	2024 2024	31.39	99950.6 99942	74.62	34 34	46	49	28	37 36	42	6611 6612	1294 1275	210	15		10	0	0	0	0	8	0	0 99.99	2
31	9 17	53	16 8	2024	31.43	99934.4	74.43	34	45	49	26	36	42	6611	1259	205	14	3	1 V	Ő	ő	ő	ő	ő	0	0 99.99	0
32	9 17 9 17		16 8 15 8	2024		99930.1 99926.3	74.34	34	45 45	48 48	28	36 36	41	6611	1250	203	13	3	1 1	0	0	0	0	0	0	0 99.99	
34	9 17	56 3	8 8	2024	31.5	99923.7	74.2	33	45	48	26	36	41	6598	1248	200	12	2	1 v	0	0	0	ŏ	ő	ő	0 99.99	0
35	9 17	67	16 8	2024	31.52	99920	74.13	33	45	48	26	36	41	6601	1256	199	12	2	1 V	0	0	0	0	0	0	0 99.99	
36	9 17 9 17	58	16 8 15 8	2024 2024		99917.4 99914.6	74.08	34 34	45 45	48	28 28	36 36	41	6604 6618	1268 1281	200 202	12 13	2	1V	0	0	0	0	0	0	0 99.99	
38	9 18	0	8 8	2024	31.58	99912.5	73.95	34	45	48	26	36	41	6633	1292	202	13	2	1 V	Ő	ő	ō	ő	ő	0	0 99.99	0
39 40	9 18		16 8 15 8	2024		99910.7 99911.1	73.87	34	45 45	48 48	26	36	41	6654	1300	201	12	2	1	0	0	0	0	0	0	0 99.99	
41	9 18	3 ;	8 8	2024	31.65	99910.6	73.77	34	45	48	26	36	41	6717	1312	200	12	2	1 V	ő	ő	ő	ő	ŏ	ŏ	0 99.99	0
42	9 18		8 8	2024		99910.4	73.71	34	45	48	26	36	41	6756	1317	198	11	1	e v	0	0	0	0	0	0	0 99.99	
43 44	9 18 9 18		16 8 15 8	2024		99910.1 99910	73.65	34 34	45 45	48 48	28	36 35	41	6790 6818	1320	195	10	1	ov v	0	0	0	0	0	0	0 99.99	
45	9 18	7	8 8	2024	31.75	99909.9	73.44	34	45	48	26	36	41	6838	1326	192	9	1	ov	0	0	ō	ō	ő	0	0 99.99	0
45	9 18		NS 8	2024		99909.9	73.34	34	45	48	26	36	41	6835 6810	1325	192	9	1	3	0	0	0	0	8	0	0 99.99	
48	9 18	10	16 8	2024		99910.1	73.15	34	45	48	26	36	41	6777	1320	196	9	1	o v	ő	ő	ő	ő	ŏ	ŏ	0 99.99	
	IGP_AQ000101_M	20240826	۲														1 4										

NumberintHourintMinuteintSecondintDayintMonthintYearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM10 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM1.0intNumber PM1.0intAttitudedoubleEW_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdoubleSatellitesUsedint	\sim	
MinuteintSecondintDayintMonthintYearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM1.0 standardintPM1.0 standardintPM1.0 standardintPM1.0 standardintPM1.0 atmosphericintPM1.0 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM1.0intSectiveStatuscharLatitudedoubleNS_IndicatorcharAltitudedoubleSpeeddoubleHDOPdouble	Number	int
SecondintDayintMonthintYearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM1.0 atmosphericintPM1.0 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM2.5intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Hour	int
DayintDayintMonthintYearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM1.0 standardintPM1.0 standardintPM1.0 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM1.0intNumber PM1.0intNumber PM2.5charLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleHDOPdouble	Minute	int
MonthintYearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM10 standardintPM10 atmosphericintPM10 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM5.0intNumber PM10intQPSActiveStatuscharLatitudedoubleNS_IndicatorcharAltitudedoubleSpeeddoubleTuecoursedoubleHDOPdouble	Second	int
YearintTemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM1.0 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM2.5intNumber PM1.0intSpactiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Day	int
TemperaturefloatPressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM1.0 standardintPM1.0 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM1.0 atmosphericintPM1.0 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM5.0intSpactiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleHDOPdouble	Month	int
PressurefloatHumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM10 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM5.0intSpead charcharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Year	int
HumidityfloatPM1.0 standardintPM2.5 standardintPM10 standardintPM10 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM1.0intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Temperature	float
PM1.0 standardintPM2.5 standardintPM10 standardintPM10 atmosphericintPM2.5 atmosphericintPM10 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleHDOPdouble	Pressure	float
PM2.5 standardintPM10 standardintPM10 atmosphericintPM2.5 atmosphericintPM10 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intSpead couplecharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Humidity	float
PM10 standardintPM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intSpead couplecharLatitudecharLongitudecharEW_IndicatorcharAltitudedoubleSpeeddoubleHDOPdouble	PM1.0 standard	int
PM1.0 atmosphericintPM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleHDOPdouble	PM2.5 standard	int
PM2.5 atmosphericintPM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intSpacetiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	PM10 standard	int
PM10 atmosphericintNumber PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	PM1.0 atmospheric	int
Number PM0.3intNumber PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	PM2.5 atmospheric	int
Number PM0.5intNumber PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	PM10 atmospheric	int
Number PM1.0intNumber PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM0.3	int
Number PM2.5intNumber PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM0.5	int
Number PM5.0intNumber PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM1.0	int
Number PM10intGPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM2.5	int
GPSActiveStatuscharLatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM5.0	int
LatitudedoubleNS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Number PM10	int
NS_IndicatorcharLongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	GPSActiveStatus	char
LongitudedoubleEW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Latitude	double
EW_IndicatorcharAltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	NS_Indicator	char
AltitudedoubleSpeeddoubleTruecoursedoubleHDOPdouble	Longitude	double
SpeeddoubleTruecoursedoubleHDOPdouble	EW_Indicator	char
Truecourse double HDOP double	Altitude	double
HDOP double	Speed	double
	Truecourse	double
SatellitesUsed int		double
	SatellitesUsed	int

- AERONET sites (Hanoi, Baclieu)
- IOPs (Spring 2025) for aerosol related study: Collection of ground base related data (AERONET, meteo/air quality, GPS, UAV...) and remote sensing data.
- Data Analysis. Aerosol study (transport, vertical distribution, physical and chemical analysis)
- Research on aerosol impacts on weather, climate and environment.
- Weather forecast improvement for intense thunderstorms: emphasis on precipitation in Hanoi(2024-2026).

Thank you very much for your attention!