

Validation and support of space-based measurements with the Pandonia Global Network of ground-based spectrometers

Thomas Hanisco¹, Nader Abuhassan^{1,2,3}, Stefano Casadio⁴, Alexander Cede^{1,3,5}, Limseok Chang⁶, Angelika Dehn⁴, Barry Lefer⁷, Elena Lind¹, Apoorva Pandey^{1,2}, Bryan Place^{1,3}, Alberto Redondas⁸, James Szykman⁹, Martin Tiefengraber⁵, Luke Valin⁹, Michel van Roozendael¹⁰, and Jonas von Bismarck⁴

¹NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
²University of Maryland Baltimore County, Maryland, USA
³SciGlob, Columbia, MD, USA
⁴Earth Observation Ground Segment Department, ESA / ESRIN, Frascati, Italy
⁵LuftBlick, Innsbruck, Austria
⁶National Institute of Environmental Research, Incheon, Korea
⁷NASA Headquarters, Washington, DC, USA
⁸AEMET- Meteorological State Agency, Spain
⁹EPA Research Triangle Park, Charllotte, NC, USA
¹⁰BIRA-IASB, Brussels, Belgium

18-September, 2024 AERONET Science and Application Exchange

Pandonia Global Network: Reference measurements of O₃, NO₂, and HCHO

- 1) Calibration and Quality Assurance:
 - a) Laboratory and Field calibration of instruments
- 2) Network operation
 - a) Remote monitoring and repair of instruments
- 3) Retrieval
 - a) Production of O_3 , NO_2 and HCHO Columns/Profiles

The PGN operates 175+ Pandora instruments

https://www.pandonia-global-network.org/ Thomas.Hanisco@nasa.gov, alexander.cede@luftblick.at

Time Evolution of Pandora and the PGN

Principles in this timeline: Jay Herman, Alexander Cede, Nader Abuhassan, Elena Lind, Bob Swap

Instrumentation

- Pandora is a ground-based sun/sky/moon viewing spectrometer system
- The sensor head (light collector) is mounted on a 2-axis tracker.
- Sun/sky/moon-light is directed to the input of a ccd spectrometer with a fiber optic cable.
- Control electronics for semi-autonomous operation in all-weather conditions
- Pixels (wavelength) and Counts (intensity) are used to derive trace gas abundance

Pandora measurements

Direct sun: mostly BEER's Law.

Total absorption used to derive the column abundance between the instrument and the top of atmosphere MAX-DOAS: multiple angle BEER's Law Differential measurements used to derive the abundance at multiple elevations

Motivation

400

250 HCHO (pp)

100

NASA Satellites measure sunlight reflected from the earth's surface and scattered from the atmosphere. This is complicated and requires assumptions (*a priori*) that are not always correct. Even harder with Geostationary!

Pandora provides direct sun with lower sensitivity to scattered light. MAX-DOAS profiles can be used to validate the *a priori* assumptions.

-20

Altitude (km)

Applications

Currently: Use integrated *in situ* columns to evaluate HCHO

Goal: Use Pandora PGN profiles to evaluate TEMPO and Sentinel 4

Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons ATom aircraft observations

Jin Liao, Glenn M Wolfe, Alex E. Kotsakis, Julie Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo González Abad, Caroline Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, Rebecca S. Hornbrook, *Atmos. Meas. Tech.* amt-2024-72.

Pandonia Global Network

	•	175 Official instruments
	•	Unofficial
	Ado	ling 30/year
211 Ac	am	61 AldineTX

190	Bangkok	78	Banting
134	BristolPA	162	Brussels-Uccle
249	ChicagoIL	67	Cologne
103	Downsview*	100	Durham
200	GrandForksND	153	GreenbeltMD*
120	Innsbruck-FKS	100	Onnsbruck-HAF
143	LibertyTX	130	Lindenberg
34	MountainViewCA	197	Nagoya
187	PittsburghPA	212	Pontianak
72	SaltLakeCityUT-Hawthorn	e181	SanJoseCA
231	Suwon-USW	182	Tel-Aviv
176	Tsukuba-NIES	163	Tsukuba-NIES-West
140	WashingtonDC	177	WestportCT
* mo	re than one instrument		

129 AliceSprings
38 BayonneNJ
111 Bucharest
180 ColumbiaMD
185 EastProvidenceRI
37 HamptonVA
246 IowaCityIA-WHS
183 LondonderryNH
251 Nainital-ARIES
53 Potchefstroom-METSI
196 Sapporo
240 Thessaloniki
254 TubaCityAZ
247 WhittierCA

ngs 65 AltZomoni NJ 122 Beijing ti 206 BuffaloNY MD 124 ComodoroRivadavia denceRI 74 EdwardsCA VA 156 HamptonVA-HU AWHS 73 Islamabad-NUST erryNH 186 MadisonCT ARIES 69 NewBrunswickNJ room-METSI 55 QueensNY 164 Seosan niki 192 Tokyo-Sophia AZ 253 TucsonAZ VA 208 Windsor-West

207 ArlingtonTX 171 Beijing-RADI 20 Busan 179 CornwallCT 169 Egbert 105 Helsinki 101 Izana* 135 ManhattanNY-CCNY 64 NewHavenCT 52 RichmondCA 54 Seoul 194 Tokyo-TMU 248 TurlockCA 66 WrightwoodCA

119 Athens-NOA 80 BeltsvilleMD 118 Cabauw 82 558 CorpusChristiTX 174 FairbanksAK 25 HoustonTX 252 KenoshaWI 236 NewLondonCT 138 Rome-IIA 235 Seoul-KU 243 Toronto-CNTower 150 Ulsan 161 Xianqhe

158 AtlantaGA* 132 Berlin 260 CameronLA 29 Fajardo 261 HoustonTX-239 Kosetice 142 MexicoCity-152 NyAlesund 115 Rome-ISAC 149 Seoul-SNU ver 145 Toronto-Sca 218 Vientiane 146 Yokosuka

antaGA*	237 Atla
rlin	57 Bou
meronLA	184 Cap
kar	217 Dala
ardo	199 Fuk
ustonTX-SanJacinto	66 Hun
setice	63 LaP
xicoCity-UNAM	157 Mex
Alesund	51 Old
me-ISAC	117 Ron
oul-SNU	77 Sing
onto-Scarborough	108 Torc
ntiane	255 Virg
osuka	232 Yon

237 AtlantaGA-SouthDeKalb	257 AustinTX
57 BoulderCO	204 BoulderCO-NCAR
184 CapeElizabethME	70 ChapelHillNC
217 Dalanzadgad	39 DearbornMI
199 Fukuoka	230 Gongju-KNU
66 HuntsvilleAL	189 Incheon-ESC*
63 LaPorteTX	133 LabLuftBlick*
157 MexicoCity-Vallejo	256 MiamiFL-FIU
51 OldFieldNY	131 Palau
117 Rome-SAP	147 SWDetroitMI
77 Singapore-NUS	139 SouthJordanUT
108 Toronto-West	242 Trollhaugen
255 VirginiaBeachVA-CBBT	159 Wakkerstroom
232 Yongin	

210 Bandung 21 Bremen 31 CharlesCityVA* 76 Dhaka 238 Granada 30 Innsbruck* 188 LapwailD 24 MilfordCT 166 PhiladelphiaPA

154 SaltLakeCityUT

170 StGeorge

270 Warsaw-UW

193 Tsukuba

Pandonia Global Network

PGN Organization by June 2024

MANAGEMENT

🐨 B. Lefer
CA. Dehn
CS. Casadio
SL. Chang
🕹 J. Szykmar

SCIENTIFIC ADVISORS

M. v. Roozendael (a) A. Redondas AEMA E. Spinei Lind 💮

PGN Real Time Data: BlickV <u>http://blickv.pandonia-global-network.org/</u>

All products are available for download on BlickV.

Quality assured total column NO_2 and O_3 are archived at the EVDC.

"Out of the Box" MAX-DOAS products provided without a field calibration.

Data quality

- Direct sun NO₂ and O₃ are "validation quality". These products have been validated with airborne (DISCOVER-AQ), balloon (O₃ sonde), and ground remote (Brewers). High quality data is on the EVDC.
- Profiles (MAX-DOAS) of NO₂ and HCHO and direct sun HCHO are not fully understood.

Validation of MAX-DOAS products: NO₂

Airborne, balloon and ground-based in situ comparisons to MAX-DOAS NO₂.

Measurements of NO_{2} columns are robust but our understanding of the spatial distribution needs improvement.

Validation of MAX-DOAS products: HCHO

NASA (SARP) and EPA (ALEGROS) airborne *in situ* profiles over Pandora sites in 2024. More flights planned for 2025.

Apoorva Pandey, Poster 49

Expansion programs

PGN

- Leverage other agencies and objectives
 - For example, the United Nations UNESCO funded 23 instruments to be managed by KOICA and NIER in southeast ASIA.
- EPA 25+ instruments
- NASA IPMSI 13 instruments
- NASA Satellite needs Working Group (SNWG) Hard to reach rural and developing nation sites
 - 10 US department of Agriculture rural sites
 - 10 US State Department embassy locations
- NOAA starting investment with interest for GEO-XO.
 - \circ $\,$ Installed at Essex, Maryland MDE site in June 2024 $\,$

Increasing Participation in Minority Serving Institutions (IPMSI)

Pandoras added in 2023-2024 at 13 institutions

- Expand in areas with limited measurement resources
- Create a cohort of motivated PI's with 5 years funding
- 90+ instruments in the TEMPO FOV

Colocated Pandora and Cimels

State 1

Whittier, CA

Tuba City, AZ

New Orleans, LA

Chesapeake Bay Bridge

Kenosha, WI

Chicago, IL

SNWG rural and agricultural sites

- PGN
- SNWG US department of Agriculture, US Forestry Service, US Environmental Protection Agency

SNWG: localized NO₂ forecasts by combining PANDORA observations with GEOS model output

- Adapt ML method developed for surface observations (Christoph Keller et al., ACP 2021).
- · Method is limited to locations with at least 1 year of historical data

PI Emma Knowland, GMAO

SNWG: Produce localized NO₂ forecasts by combining PANDORA observations with GEOS model output

- Adapt ML method developed for surface observations (Christoph Keller et al., ACP 2021)
- · Method is limited to locations with at least 1 year of historical data

PI Emma Knowland, GMAO

PGN vs GEOS-CF: Diurnal variation of HCHO tropospheric column, in urban sites of North America (2021-2023 summer)

Tianlang Zhao and Jingqiu Mao, University of Alaska.

(molec cm⁻²)

HCHO_{TROPCOL}

Instrumentation & Technology

- Delrin -> Nylon in sensor head. **Complete**
- Upgraded tracker. Complete
 - Still working on trackers with brakes
- Upgraded sensor head cables on all new instruments/repairs.
- New optical diffusers in all new instruments/repairs.
- Dehumidifier in spectrometer box
 - Humidity is still #1 failure mode
 - All new NASA instruments have the dehumidifier
- Custom spectrometer development through NASA SBIR
 - Low stray light
 - Temperature controlled detector
 - Fiber adapter
- New PAN-C all in one in GSFC lab for calibration

Electrolytic membrane dehumidifier

SciGlob NASA SBIR Ph-II Spectrometer prototype

THANKS!

Optical NO₂ Sonde HCHO and O₃ in development 2 kg 100 ppt/s Bailey et al., *AMT*

