Synergy of ground-based remote sensing instrumentations to explore the impact of NO₂ absorption on aerosol optical depth measurements

Akriti Masoom^{*1}, Theano Drosoglou², Stelios Kazadzis¹, Ioannis-Panagiotis Raptis^{3,4}

¹Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), Davos, 7260, Switzerland ²Institute Information Technologies Institute, Harilaou-Thermi, Thessaloniki, 57001, Greece ³Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Athens, 15236, Greece ⁴Laboratory of Climatology and Atmospheric Environment, Sector of Geography and Climatology, Department of Geology and Environment, National and Kapodistrian University of Athens, Athens, 15784, Greece

Introduction and data utilization: Sun photometer, spectroradiometer and global networks

Sun photometer: Aerosol optical depth (AOD) measurement

- Using Lambert–Beer law from direct sun measurements
- Considering contribution from Rayleigh scattering by atmospheric molecules and absorption by atmospheric constituents other than aerosols like ozone, nitrogen dioxide, water vapour, etc.

Spectroradiometers: trace gas measurements

NO₂, O₃, HCHO total and tropospheric column, profile, surface concentration

Why we looked for NO₂ absorption impact on AOD measurements?

- Tropospheric NO₂ has high spatiotemporal variation and regional confinement near its source
- Likelihood for deviation from climatology in regions with high NO₂ emissions or trend reversal
- Also, there can be significant diurnal variation in NO₂ concentration

Objective

Assessment of the impact of NO₂ contribution on AOD measurements at several sites worldwide

Instrumentation

- AERONET (Aerosol Robotic Network) CIMEL sun photometers Two global networks \rightarrow a number of
- PGN (Pandonia Global Network) Pandora spectroradiometers co-locations useful for such analysis _

Analysis

- PGN NO₂ vertical column density (VCD) \rightarrow high (0, 10) and medium (1, 11) quality flags
- NO₂ correction on AERONET AOD at λ (nm): 340, 380, 440 and 500 and Ångström Exponent **λ** (nm): 440-870 and 340-440

AERONET Science and Application Exchange, September 18, 2024, USA * Pictures: https://aeronet.gsfc.nasa.gov, https://pandora.gsfc.nasa.gov, https://www.pandonia-global-network.org

Methodology: Co-located AERONET and PGN sites worldwide

- PGN stations coordinates \rightarrow AERONET latitude \pm 0.09° and longitude \pm 0.07° (in most of the cases with the exact same)
- Corresponding to daily AERONET time \rightarrow selection of nearest matching PGN time \rightarrow time interpolation of PGN data to AERONET time stamp
- Categorized all the stations as urban/rural site ('rural' as small cities that are in the countryside or adjacent to ocean and other sites as 'urban') •

PGN: Pandonia Global Network; OMI: Ozone Monitoring Instrument

AOD calculation from direct sun measurements of sun photometers: NO₂ correction

* Cuevas, E., et al.: Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements, Atmos. Meas. Tech., 12, 4309–4337, 2019. * Gueymard, C.: SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment, Florida Solar Energy Center Cocoa, 1995.

DU: Dobson unit; PGN: Pandonia Global Network; OMIc: OMI Climatology

(1)Lambert Beer law

$$\tau_{NO_2}(\lambda) = \frac{\sigma_{NO_2}(\lambda)}{1000} * \frac{m_{NO_2}}{m_a} * NO_2(DU)$$
 (2) Cuevas et a

$$\begin{aligned} \tau_{aer,PGN}(\lambda) \\ &= \tau_{aer,AERONET}(\lambda) + \tau_{NO_{2},AERONET}(\lambda) - \left(\tau_{NO_{2},AERONET}(\lambda) * \frac{NO_{2}}{NO_{2}}\right) \\ &= \tau_{aer,AERONET}(\lambda) - \tau_{NO_{2},AERONET}(\lambda) \left(\frac{NO_{2}PGN}{NO_{2}OMIc} - 1\right) \end{aligned}$$

- NO₂ optical depth is directly proportional to NO₂ vertical column density at a specific wavelength and sun elevation
- σ_{NO_2} , m_{NO_2} : NO₂ absorption coefficient at wavelength (λ) and NO₂ optical air mass obtained from (Gueymard, 1995)

NO₂ absorption induced differences in AOD calculations

	Case 1	Case 2
(AERONET – PGN)	< 0	> 0
NO ₂ difference	OMIc NO ₂	OMIc NO
ΔNO_2	underestimation	overestima
(AERONET – PGN)	> 0	< 0
AOD difference	AERONET AOD	AERONET A
$\Delta AOD \left(\Delta \tau_{aer}(\lambda) \right)$	overestimation	underestim

AERONET Science and Application Exchange, September 18, 2024, USA

05/16

Differences between AERONET OMI NO₂ climatology and PGN NO₂ measurements: Impact on AOD measurements

- 16 stations in case 1 (13 are urban sites and 3 are rural sites) \bullet
- 6 urban stations (DHK, MXC, ATH, LPT, HOU and ROM) \rightarrow mean NO₂ underestimation > 0.5 x 10^{-4} mol-m⁻² and AOD overestimation ≥ 0.002
- AERONET OMIC NO₂ underestimation \rightarrow higher pollution levels, which ulletaveraged OMIc climatological interpretation of NO₂ fails to depict

- 17 stations in case 2 (11 are urban sites and 6 are rural sites)
- 4 urban stations (BEI, TSU, BRW and JYC) \rightarrow mean NO₂ overestimation > 0.5 x 10^{-4} mol-m⁻² and AOD underestimation ≥ 0.002
- AERONET OMIC NO₂ overestimation \rightarrow trend reversal of tropospheric NO₂ during the last decade due to reduction in pollution levels (OMIc is based on average values during 2004–2013)

Differences between AERONET OMI NO₂ climatology and PGN NO₂ measurements

Case 1: AERONET AOD overestimation

DHK: Mean PGN NO₂ is ~4 times higher than OMIc, OMIc NO₂ remains mostly constant and below 5 x 10⁻⁴ mol-m⁻²

MXC: Mean PGN NO₂ is \sim 2 times above OMIc

PGN NO₂ variation is mostly above OMIc values

AOD: aerosol optical depth; PGN: Pandonia Global Network; OMIc: OMI Climatology

Case 2: AERONET AOD underestimation

BEI, BRW: Mean PGN NO₂ is ~1.5 times lower than OMIc, PGN NO₂ levels reaching ~20 x 10⁻⁴ mol-m⁻² for BEI and to 10 x 10⁻⁴ mol-m⁻² for BRW

PGN NO₂ variation is on both side of the OMIc values

Are AOD, NO₂ values or AOD differences correlated?

- AOD variation as a function of NO₂ VCD and AOD differences as a function of AOD values \bullet
- AOD is not correlated with NO₂ VCD values and AOD differences are also not correlated with AOD values
- NO₂ differences are related to AOD differences, and vice versa \bullet

Ångström Exponent calculation from spectral AOD measurement

PGN: Pandonia Global Network; AE, α : Ångström Exponent; OMIc: OMI Climatology

Effect of climatological vs real NO₂ values on Ångström Exponent

- AE440–870 nm difference median was found to be -0.07 and -0.05 for BEI and BRW, respectively, and within ±0.03 for other stations
- AE340–440 nm difference median was 0.07 for BEI, 0.04 for BRW, and within ±0.03 for the remaining stations
- can be attributed to the narrower AOD distributions

Case 1: AERONET AOD overestimation

 Δ AE440-870 Shift in peak of AE difference distribution towards a positive value \rightarrow Higher relative positive error in AOD at shorter wavelength (440 and 500 nm)

 $\Delta AE340-440$ Shift in Peak of distribution is towards the other direction \rightarrow Higher error at higher wavelength (440 nm) than at lower wavelength (340 nm)

Case 2: AERONET AOD underestimation \triangle AE440-870 and \triangle AE340-440

AERONET Science and Application Exchange, September 18, 2024, USA * Wagner, et al.: Some considerations about Ångström exponent distributions, Atmos. Chem. Phys., 8, 481–489, https://doi.org/10.5194/acp-8-481-2008, 2008

Narrower frequency distribution for stations like DHK can be attributed to broader AOD distribution (Wagner and Silva, 2008) and a broader AE distribution

Similar but opposite (in sign) to case 1

Ångström Exponent differences variation with NO₂ and AOD magnitude

- AE uncertainty is not very simple to interpret as \bullet
- ΔAE variation with NO₂
 - Case 1: there is a strong positive and negative bias in AE440–870 and AE340–440, respectively
 - Case 2: the positive and negative biases are not that strongly present
- ΔAE variations with AOD showed high AE differences associated with low AOD instances

Case 1:

- it is a derivative quantity, sensitivity depends on AOD and depends on any spectral correlations in AOD uncertainty

Site specific analysis for Rome - AERONET and SKYNET

- Average AOD bias for Rome was ~ 0.002 and ~ 0.003 at 440 and 380 nm, respectively for AERONET but was a bit higher for SKYNET (~ 0.007)
- AE bias was ~ 0.02 and ~ 0.05 for AERONET and SKYNET, respectively

AOD: aerosol optical depth; PGN: Pandonia Global Network; AE, α : Ångström Exponent; OMIc: OMI Climatology AERONET Science and Application Exchange, September 18, 2024, USA *Drosoglou, T., et al.: Evaluating the effects of columnar NO₂ on the accuracy of aerosol optical properties retrievals, Atmos. Meas. Tech., 16, 2989–3014, 2023

Higher $\triangle AOD$ are obtained for higher NO₂ concentrations, regardless of the initial measured AOD (i.e., higher $\triangle AOD$ are also observed for lower AOD values)

Drosoglou et al., 2023

Site specific analysis for Rome: High Pandora NO₂ and low AOD - AERONET and SKYNET

AOD: aerosol optical depth; AE: Ångström Exponent

*Drosoglou, T., et al.: Evaluating the effects of columnar NO₂ on the accuracy of aerosol optical properties retrievals, Atmos. Meas. Tech., 16, 2989–3014, 2023

- A high NO₂ event in Rome on 25 June 2020
- For AERONET,
 - median and maximum AOD bias was ~ 0.003 and ~ 0.02 , respectively
 - median and maximum AE biases are 0.014 and 0.11, respectively
- For SKYNET,
 - AOD bias median and maximum was ~ 0.008 and ~ 0.03 , respectively
 - AE bias median and maximum was \sim 0.03 and \sim 0.10, respectively
 - both AOD and AE deviations are higher compared to AERONET
 - can be due to the fact that **SKYNET AOD calculations do not** account for NO₂ absorption

Site specific analysis for Rome: Impact on single scattering albedo (SSA)

*Drosoglou, T., et al.: Evaluating the effects of columnar NO₂ on the accuracy of aerosol optical properties retrievals, Atmos. Meas. Tech., 16, 2989–3014, 2023 * Eck, T. F., et al.: Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res.-Atmos., 108, 2156–2202, https://doi.org/10.1029/2002JD002321, 2003

- Comparisons of SSA at 440 nm obtained from \bullet GRASP with AERONET and Pandora NO₂ for NO₂ values above 3.12 x 10⁻⁴ mol m⁻² (μ + 2 σ)
- Consistent positive bias of ~ 0.02 (~ 2 %) in high NO₂ conditions
- Previous studies found SSA retrieval uncertainties in the range of 0.02–0.03 (Eck et al., 2003), whereas the correction, when high NO_2 is recorded, is usually higher

Key findings and way ahead

- NO₂ climatological input was found to underestimate NO₂ values in a number of cases as compared to PGN (ground-based) measurements which led to an overestimation of AOD calculations in spectral range with prominent NO₂ absorption and vice versa for other cases
- Satellite based NO₂ climatology used for AOD calculations can be updated with focus on urban areas that can also have high diurnal variability in NO₂ concentrations
- Instrument co-location of different instrument/networks can potentially be used to improve standalone algorithms and retrievals using different outputs from co-located instrumentations (e.g., in this analysis PGN NO₂ output was used as an input in AERONET AOD calculations)
- This analysis highlights the importance of accurate NO₂ representation with the best possible scenario, however, concerning implementation into global AOD networks (such as AERONET, GAW-PFR or SKYNET), synergistic use of satellite data is required to account for all stations and also concerning the times series of data availability from Pandora instruments that start from 2016

Questions !!!!

https://doi.org/10.5194/egusphere-2024-682 Preprint. Discussion started: 19 March 2024 (c) Author(s) 2024. CC BY 4.0 License.

Assessment of NO₂ uncertainty impact on aerosol optical depth retrievals at a global scale

Akriti Masoom¹, Stelios Kazadzis¹, Masimo Valeri², Ioannis-Panagiotis Raptis^{3,4}, Gabrielle Brizzi², Kyriakoula Papachristopoulou⁵, Francesca Barnaba⁶, Stefano Casadio², Axel Kreuter^{7,8}, Fabrizio Niro⁹

- ¹Physical-Meteorological Observatory in Davos, World Radiation Center (PMOD/WRC), Davos, 7260, Switzerland ²Serco Italia S.p.A., Frascati, Rome, 00044, Italy ³Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), Athens, 15236, Greece ⁴Laboratory of Climatology and Atmospheric Environment, Sector of Geography and Climatology, Department of Geology
- and Environment, National and Kapodistrian University of Athens, Athens, 15784, Greece ⁵Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), Athens, 15236, Greece ⁶National Research Council, Institute of Atmospheric Sciences and Climate, CNR-ISAC, Rome, 00133, Ital ⁷Institute for Biomedical Physics, Medical University Innsbruck, Innsbruck, 6020, Austria
- ⁸LuftBlick OG, Innsbruck, 6020, Austria ⁹ESA-ESRIN, Frascati, Rome, 00044, Italy

Correspondence to: Akriti Masoom (akriti.masoom@pmodwrc.ch)

Atmos. Meas. Tech., 16, 2989-3014, 2023 https://doi.org/10.5194/amt-16-2989-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmospheric leasuremen Techniques

Evaluating the effects of columnar NO₂ on the accuracy of aerosol optical properties retrievals

Theano Drosoglou¹, Ioannis-Panagiotis Raptis^{1,2}, Massimo Valeri³, Stefano Casadio³, Francesca Barnaba⁴, Marcos Herreras-Giralda⁵, Anton Lopatin⁵, Oleg Dubovik⁶, Gabriele Brizzi³, Fabrizio Niro⁷, Monica Campanelli⁴ and Stelios Kazadzis⁸

- ¹Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece
- ²Laboratory of Climatology and Atmospheric Environment, Sector of Geography and Climatology, Department of Geology and Environment, National and Kapodistrian University of Athens, 15784 Athens, Greece
- ³Serco Italia S.p.A., 00044 Frascati, Rome, Italy
- ⁴National Research Council, Institute of Atmospheric Sciences and Climate, CNR-ISAC, 00133 Rome, Italy
- ⁵GRASP SAS, Remote Sensing Developments, 59260 Lezennes, France ⁶Laboratoire d'Optique Atmosphérique (LOA) – UMR 8518, CNRS/Université de Lille,
- Villeneuve-d'Ascq, 59650, France
- ⁷ESA-ESRIN, 00044 Frascati, Rome, Italy
- ⁸Physicalisch-Meteorologisches Observatorium Davos, World Radiation Center, 7260 Davos, Switzerland

Correspondence: Theano Drosoglou (tdroso@noa.gr)

Received: 25 November 2022 - Discussion started: 2 December 2022 Revised: 10 April 2023 - Accepted: 8 May 2023 - Published: 15 June 2023

Extra Slides

Differences between AERONET OMI NO₂ climatology and PGN NO₂ measurements: 10 stations

Are AOD, NO₂ values or AOD differences correlated?: 10 stations

Effect of climatological vs real NO₂ values on Ångström Exponent: 10 stations

Ångström Exponent differences variation with NO₂ and AOD magnitude: 10 stations

