

Analysis of the aerosol optical properties in the Southern of Gobi region of Mongolia

Enkhbaatar DAVAANYAM* , Battumur TSERENCHUNT

Information and Research Institute of Meteorology, Hydrology and Environment, Mongolia

AERONET Science and Application Exchange

September 17-19, 2024

Contents

Part 1

AERONET network and monitoring in MongoliaAERONET and Pandora

Part 2

AERONET and Asian Dust Aerosol Model in case study

□ Conclusion and suggestion

AERONET network in Mongolia

Dalanzadgad 1997~ present

Ulaangom 1998.03-1998.07

AERONET Monitoring in Dalanzadgad

Atmospheric Environment Observation in Mongolia

Global monitoring laboratory (GMD) NOAA CO2, CH4, SF6, N₂O and CO

AERONET Sun-photometer Aerosol Optical Thickness (AOT)

KOSA monitoring PM10 and PM2.5 surface measureme nts

Dalanzadgad (Pandora 217)

LIDAR Measurement of Depolarization and Backscattering Ratios. Ceilometer Measurement of Backscattering coefficient and Cloud base height.

AQMS Measurements of SO2, NOx, CO, O3, PM10 and PM2.5

Dust observation network

Site information of Pandora instruments

Population

Ulaanbaatar (capital city)
Dalanzadgad (rural)

Ulaanbaatar is capital city of Mongolia which is urban area. Dalanzadgad is developing city of the Mongolia which is suburban area.

DZ station installed 2022.05.12 PGN generating data from March 2023.

UB station installed 2022.07.25. Broken 2022.11.02

Dalanzadgad (Pandora 217) Geographical coordinate of the site (Roof top of the building)

LAT : 43.57722
LON: 104.418055

HEIGHT: 1462 a.s.l

Ulaanbaatar city (Pandora 216)		
Geographical coordinate of the s		
	LAT : 47.92038333	
	LON: 106.9118222	
HEI	GHT: 1303.34 a.s.l	

Data of the DZ P217 Pandora instruments

Dalanzadgad station P217 Time series plots for NO2, HCHO, and SO2 (2022/06/01-2023/09/30)

Comparison of the Pandora data with GEMS and AERONET

GEMS satellite

Comparison of the NO2 Ulaanbaatar's Pandora data P216 with P217

Dalanzadgad (Pandora 217)

Geographical coordinate of the site

(Roof top of the building)

□ LAT : 43.57722

LON: 104.4180555

Ulaanbaatar city (Pandora 216) Geographical coordinate of the site LAT : 47.92038333 LON: 106.9118222 HEIGHT: 1303.34 a.s.l

NO2 vertical profile DZ station

Low-lying temperature inversion Remember Ideal Gas Law: PV = nRT, or. $\rho = \frac{1}{RT}$ varm a **Normal Conditions Temperature Inversion** cool air Cold Air Cold Air Top of the inversion Warm Air - Inversion Layer Cooler Air Night profile Day profile Cooler Air Warm Air **C00** warm Temperature

AERONET and Asian Dust Aerosol Model in case study

Dust storm in Mongolia

- The Gobi desert region is dust storm one of the source of Asian dust.
- The AERONET is located southern of Mongolia.

Fig. 2 Natural zones (Dorjgotov 2009) and geographic distribution of observation points for pasture plants. Fig. 10 Integrated soil erodibility map over Mongolia Dots indicate 161 observation points for pasture plants

D. Jugder, B. Gantsetseg, **E. Davaanyam**, M. Shinoda (2018). "<u>Developing a soil erodibility map across</u> <u>Mongolia</u>," <u>Natural Hazards</u>: Journal of the International Society for the Prevention and Mitigation of Natural <u>Hazards</u>, Springer; International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 71-94, November.

Source: http://olnodo.com/mn/post/24184

The trajectories of air mass confirmed that dust can be transported from the dust source areas in Mongolia and China to the Korean Peninsula and Japan (Purevsuren et.,al 2019).

WRF-CMAQ/ADAM3-Haze

ADAM3-Haze High Resolution (1km) ADAM3 for Ulaanbaatar

CMAQ Modeling System Flow Chart

- The initial conditions processor ICON
- The boundary conditions processor BCON
- The Meteorology-Chemistry Interface Processor MCIP
- The CMAQ Chemistry-Transport Model CCTM

CASE 1: Comparison of the ADAM model and GEMS data (2022.05.05) ADT of Asiandust dust PMus [unitless] ADAM2-Haze(MWRF D1 27KM)

130°E

130°

50°N

CASE 2: Comparison of the ADAM model and GEMS data (2023.05.18)

(2023.05.18 03:00 UTC)

(2023.05.18 06:30 UTC)

(2023.05.18 03:00 UTC) Column Integrated Total PM₁₀ [mg/m²] ADAM2-Haze(MWRF D1 27KM)

(2023.05.18 06:00 UTC)

2000 1900

GEMS GEMS AOD 443 nm 20230518 02:45 UTC 90°E 120°E 130°E 50°N 50°N 40°N 40 30°N 30° 120°E 130°E 90°E 100°E 110°E

Comparison of the AERONET, PANDORA and ADAM model simulation April, 2023

Name	Selection
Model and version	MGLADAM model
Dynamic core	Advanced Research WRF (ARW)
Horizontal grid resolution (size)	D1: 27x27 km (190x170 grid)
Vertical levels	34
Initial and lateral boundary conditions	NCEP GFS reanalysis data (0.25 degree)
Simulation length	720 hour
Time step	D1:6 seconds
Physics :	schemes
Cloud microphysics	WRF Single-Moment 6-class scheme
Shortwave radiation	Dudhia scheme
ongwave radiation	RRTM scheme
PBL physics	Yonsei University scheme
Land Surface Physics	Noah Land Surface Model
Surface Layer Physics	MM5 similarity
Cumulus Parameterization	Kain-Fritsch scheme

Suggestions

- To repair the Ulaangom AERONET station
- To increase AERONET network in Mongolia

Thank you very much for attention